JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMPLETION OF HANKEL PARTIAL CONTRACTIONS OF NON-EXTREMAL TYPE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COMPLETION OF HANKEL PARTIAL CONTRACTIONS OF NON-EXTREMAL TYPE
KIM, IN HYOUN; YOO, SEONGUK; YOON, JASANG;
  PDF(new window)
 Abstract
A matrix completion problem has been exploited amply because of its abundant applications and the analysis of contractions enables us to have insight into structure and space of operators. In this article, we focus on a specific completion problem related to Hankel partial contractions. We provide concrete necessary and sufficient conditions for the existence of completion of Hankel partial contractions for both extremal and non-extremal types with lower dimensional matrices. Moreover, we give a negative answer for the conjecture presented in [8]. For our results, we use several tools such as the Nested Determinants Test (or Choleski's Algorithm), the Moore-Penrose inverse, the Schur product techniques, and a congruence of two positive semi-definite matrices; all these suggest an algorithmic approach to solve the contractive completion problem for general Hankel matrices of size in both types.
 Keywords
Hankel partial contraction;contractive completion;extremal type;non-extremal type;
 Language
English
 Cited by
1.
COMPLETIONS OF HANKEL PARTIAL CONTRACTIONS OF SIZE 5×5 NON-EXTREMAL CASE, Journal of the Chungcheong Mathematical Society, 2016, 29, 1, 137  crossref(new windwow)
 References
1.
G. Arsene and A. Gheondea, Completing matrix contractions, J. Operator Theory 7 (1982), no. 1, 179-189.

2.
W. Arveson, Interpolation problems in nest algebra, J. Funct. Anal. 20 (1975), no. 3, 208-233. crossref(new window)

3.
J. Bowers, J. Evers, L. Hogben, S. Shaner, K Sinder, and A. Wangsness, On completion problems for various classes of P-matrices, Linear Algebra Appl. 413 (2006), no. 2-3, 342-354. crossref(new window)

4.
M. G. Crandall, Norm preserving extensions of linear transformations on Hilbert space, Proc. Amer. Math. Soc. 21 (1969), 335-340.

5.
G. M. Crippen and T. F. Havel, Distance Geometry and Molecular Conformation, Wiley, New York, 1988.

6.
R. Curto, C. Hernandez, and E. de Oteyza, Contractive completions of Hankel partial contractions, J. Math. Anal. Appl. 203 (1996), no. 2, 303-332. crossref(new window)

7.
R. Curto and W. Y. Lee, Joint hyponormality of Toeplitz pairs, Mem. Amer. Math. Soc. 150 (2001) no. 712, 65 pp.

8.
R. Curto, S. H. Lee, and J. Yoon, Completion of Hankel partial contractions of extremal type, J. Math. Phys. 53 (2012), 123526. crossref(new window)

9.
C. Davis, An extremal problem for extensions of a sesquilinear form, Linear Algebra Appl. 13 (1976), no. 1-2, 91-102. crossref(new window)

10.
C. Davis, W. M. Kahan, and H. F. Weinberger, Norm-preserving dilations and their application to optimal error bounds, SIAM J. Numer. Anal. 19 (1982), no. 3, 445-469. crossref(new window)

11.
C. Foias and A. E. Frazho, Redheffer products and the lifting of contractions on Hilbert space, J. Operator Theory 11 (1984), no. 1, 193-196.

12.
R. M. Gray, On unbounded Toeplitz matrices and nonstationary time series with an application to information theory, Inform. Control 24 (1974), 181-196. crossref(new window)

13.
R. M. Gray and L. D. Davisson, An Introduction to Statistical Signal Processing, Cambridge University Press, London, 2005.

14.
L. Hogben, Matrix completion problems for pairs of related classes of matrices, Numer. Linear Algebra Appl. 373 (2003), 13-19. crossref(new window)

15.
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, London, 1985.

16.
I. S. Iohvidov, Hankel and Toeplitz Matrices and Forms: Algebraic Theory, Birkhauser- Verlag, Boston, 1982.

17.
C. R. Johnson and L. Rodman, Completion of partial matrices to contractions, J. Funct. Anal. 69 (1986), no. 2, 260-267. crossref(new window)

18.
C. R. Johnson and L. Rodman, Completion of Toeplitz partial contractions, SIAM J. Matrix Anal. Appl. 9 (1988), no. 2, 159-167. crossref(new window)

19.
M. Laurent, A connection between positive semidefinite and Euclidean distance matrix completion problems, Linear Algebra Appl. 273 (1998), 9-22. crossref(new window)

20.
S. Parrott, On a quotient norm and Sz.-Nagy-Foias lifting theorem, J. Funct. Anal. 30 (1978), no. 3, 311-328. crossref(new window)

21.
V. Paulsen, Completely bounded maps and dilations, Pitmam Research Notes in Mathematics Series, vol. 146, Longman Sci. Tech., New York, 1986.

22.
S. Power, The distance to upper triangular operators, Math. Proc. Cambridge Philos. Soc. 88 (1980), no. 2, 327-329. crossref(new window)

23.
J. L. Smul'jan, An operator Hellinger integral, Mat. Sb. (N.S.) 49 (1959), 381-430 (in Russian).

24.
Y. L. Shmul'yan and R. N. Yanovskaya, Blocks of a contractive operator matrix, (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 25 (1981), no. 7, 72-75

25.
(English translation) Soviet Math. (Iz. VUZ) 25 (1981), 82-86.

26.
H. J. Woerdeman, Strictly contractive and positive completions for block matrices, Linear Algebra Appl. 136 (1990), 63-105. crossref(new window)

27.
Wolfram Research, Inc., Mathematica, Version 9, Wolfram Research Inc., Champaign, IL, 2013.