JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE CONVERGENCE OF SERIES OF MARTINGALE DIFFERENCES WITH MULTIDIMENSIONAL INDICES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE CONVERGENCE OF SERIES OF MARTINGALE DIFFERENCES WITH MULTIDIMENSIONAL INDICES
SON, TA CONG; THANG, DANG HUNG;
  PDF(new window)
 Abstract
Let {Xn; } be a field of martingale differences taking values in a p-uniformly smooth Banach space. The paper provides conditions under which the series converges almost surely and the tail series {} satisfies and for given fields of positive numbers {bn} and {Bn}. This result generalizes results of A. Rosalsky, J. Rosenblatt [7], [8] and S. H. Sung, A. I. Volodin [11].
 Keywords
p-uniformly smooth Banach spaces;field of martingale differences;convergent of series of random field;tail series of random field;
 Language
English
 Cited by
 References
1.
Y. S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales, 2nd ed., Springer-Verlag, New York, 1988.

2.
J. I. Hong and J. Tsay, A strong law of large numbers for random elements in Banach spaces, Southeast Asian Bull. Math. 34 (2010), no. 2, 257-264.

3.
N. V. Huan and N. V. Quang, The Doob inequality and strong law of large numbers for multidimensional arrays in general Banach spaces, Kybernetika (Prague) 48 (2012), no. 2, 254-267.

4.
E. Nam and A. Rosalsky, On the rate of convergence of series of random variables, Teor. Imovir. Mat. Stat. 52 (1995), 120-131 (in Ukrainian)

5.
English translation in: Theory Probab. Math. Statist. 52 (1996), 129-140.

6.
G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), no. 3-4, 326-350. crossref(new window)

7.
G. Pisier, Probabilistic methods in the geometry of Banach spaces, In: Probability and analysis (Varenna, 1985), 167-241, Lecture Notes in Math., 1206, Springer, Berlin, 1986.

8.
A. Rosalsky and J. Rosenblatt, On the rate of convergence of series of Banach space valued random elements, Nonlinear Anal. 30 (1997), no. 7, 4237-4248. crossref(new window)

9.
A. Rosalsky and J. Rosenblatt, On convergence of series of random variables with applications to martingale convergence and to convergence of series with orthogonal summands, Stoch. Anal. Appl. 16 (1998), no. 3, 553-566. crossref(new window)

10.
A. Rosalsky and A. I. Volodin, On convergence of series of random elements via maximal moment relations with applications to martingale convergence and to convergence of series with p-orthogonal summands, Georgian Math. J. 8 (2001), no. 2, 377-388

11.
Correction, Georgian Math. J. 10 (2003), no. 4, 799-802.

12.
F. S. Scalora, Abstract martingale convergence theorems, Pacific J. Math. 11 (1961), 347-374. crossref(new window)

13.
S. H. Sung and A. I. Volodin, On convergence of series of independent random variables, Bull. Korean Math. Soc. 38 (2001), no. 4, 763-772.