JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE SYMMETRY OF spin DIRAC SPECTRUMS ON RIEMANNIAN PRODUCT MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE SYMMETRY OF spin DIRAC SPECTRUMS ON RIEMANNIAN PRODUCT MANIFOLDS
HONG, KYUSIK; SUNG, CHANYOUNG;
  PDF(new window)
 Abstract
It is well-known that the spectrum of a Dirac operator on a closed Riemannian manifold of dimension 2k for is symmetric. In this article, we prove that over an odd-dimensional Riemannian product with a product structure for , , the spectrum of a Dirac operator given by a product connection is symmetric if and only if either the Dirac spectrum of is symmetric or
 Keywords
Dirac operator; manifold;spectrum;eta invariant;
 Language
English
 Cited by
 References
1.
M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69. crossref(new window)

2.
M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry II, Math. Proc. Cambidge Philos. Soc. 78 (1975), 405-432. crossref(new window)

3.
H. Baum, A remark on the spectrum of the Dirac operator on pseudo-Riemannian spin manifolds, SFB 288, Preprint 136, 1994.

4.
Th. Friedrich, Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics, vol. 25, AMS, Providence, RI, 2000.

5.
Th. Friedrich and E. C. Kim, The Einstein-Dirac equation on Riemannian spin manifolds, J. Geom. Phys. 33 (2000), no. 1-2, 128-172. crossref(new window)

6.
E. C. Kim, Die Einstein-Dirac-Gleichung uber Riemannschen Spin-Mannigfaltigkeiten, Thesis, Humboldt-Universitat zu Berlin, 1999.

7.
E. C. Kim, The A-genus and symmetry of the Dirac spectrum on Riemannian product manifolds, Differential Geom. Appl. 25 (2007), 309-321. crossref(new window)

8.
H.-B. Lawson and M.-L.Michelsohn, Spin Geometry, Princeton University Press, Princeton, NJ, 1989.

9.
A. Lichnerowicz, Champs spinoriels et propagateurs en relativite general, Bull. Sci. Math. France 92 (1964), 11-100.

10.
L. I. Nicolaescu, Notes on Seiberg-Witten Theory, Graduate Studies in Mathematics, 28. American Mathematical Society, Providence, RI, 2000.