JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ALMOST SPLIT SEQUENCES FOR COMPLEXES VIA RELATIVE HOMOLOGY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ALMOST SPLIT SEQUENCES FOR COMPLEXES VIA RELATIVE HOMOLOGY
YANG, GANG;
  PDF(new window)
 Abstract
We use methods of relative homological algebra on the category C(mod), of complexes of finitely generated modules over an artin algebra , to give some characterizations of almost split sequences.
 Keywords
C-E exact sequences;Auslander-Reiten translations;almost split sequences;additive subbifunctors;non-degenerated bilinear forms;
 Language
English
 Cited by
 References
1.
I. Assem, D. Simson, and A. Skowronski, Elements of the Representation Theory of Associative Algebras Vol. I, London Mathematical Society Student Texts, 65. Cambridge University Press, Cambridge, 2006.

2.
M. Auslander, Comments on the functor Ext, Topology 8 (1969), 151-166. crossref(new window)

3.
M. Auslander and I. Reiten, Representation theory of Artin algebras. III. Almost split sequences, Comm. Algebra 3 (1975), no. 3, 239-294. crossref(new window)

4.
M. Auslander, I. Reiten, and S. Smalo, Representation Theory of Artin Algebras, Cambridge Univ. Press, Cambridge, 1995.

5.
M. Auslander and S. O. Smalo, Almost split sequences in subcategories, J. Algebra 69 (1981), no. 2, 426-454. crossref(new window)

6.
M. Auslander and O. Solberg, Relative homology and representation theory I. Relative homology and homologically finite subcategories, Comm. Algebra 21 (1993), no. 9, 2995-3031. crossref(new window)

7.
R. Bautista, M. J. Souto Salorio, and R. Zuazua, Almost split sequences of complexes of fixed size, J. Algebra, 287 (2005), no. 1, 140-168. crossref(new window)

8.
P. Draxler, I. Reiten, S. O. Smalo, and O. Solberg, Exact categories and vector space categories, Trans. Amer. Math. Soc. 351 (1999), no. 2, 647-682. crossref(new window)

9.
E. E. Enochs, Cartan-Eilenberg complexes and resolutions, J. Algebra 342 (2011), 16-39. crossref(new window)

10.
P. Gabriel and A. V. Roiter, Representations of finite dimensional algebras, in: A. I. Kostrikin, I. V. Shafarevich (Eds.), Algebra VIII, in: Encyclopaedia Math. Sci., vol. 73, Springer, Berlin, 1992.

11.
D. Happel, On the derived category of a finite dimensional algebras, Comment. Math. Helv. 63 (1987), no. 3, 339-389.

12.
D. Happel, Triangulated categories in the representation theory of finite dimensional algebras, London Math. Soc. Lecture Note Series, vol. 119, Cambridge University Press, 1988.

13.
P. Jorgensen, Auslander-Reiten triangles in subcategories, J. K-Theory 3 (2009), no. 3, 583-601. crossref(new window)

14.
M. Kleiner, Approximations and almost split sequences in homologically finite subcategories, J. Algebra 198 (1997), no. 1, 135-163. crossref(new window)

15.
H. Krause and J. Le, The Auslander-Reiten formula for complexes of modules, Avd. Math. 207 (2006), no. 1, 133-148.

16.
H. Lenzing and R. Zuazua, Auslander-Reiten duality for abelian categories, Bol. Soc. Mat. Mexicana 10 (2004), no. 2, 169-177.

17.
S. Liu, P. Ng, and C. Paquette, Almost split sequences and approximations, Algebr. Represent. Theory 16 (2013), no. 6, 1809-1827. crossref(new window)

18.
P. Ng, Existence of Auslander-Reiten sequences in subcategories, J. Pure Appl. Algebra 215 (2011), no. 10, 2378-2384. crossref(new window)

19.
S. Salarian and R. Vahed, Almost split sequences in the category of complexes of modules, J. Algebra Appl. 14 (2015), no. 3, 1550037, 15 pp.

20.
J.-L. Verdier, Des categories derivees des categories abeliennes, Asterisque 239 (1996), 253 pp.

21.
P. Zhang, Monomorphism categories, cotilting theory, and Gorenstein-projective modules, J. Algebra 339 (2011), 181-202. crossref(new window)

22.
X. Zhang and Z. Huang, On F-almost split sequences, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 6, 1149-1164. crossref(new window)