JOURNAL BROWSE
Search
Advanced SearchSearch Tips
POSTPROCESSING FOR GUARANTEED ERROR BOUND BASED ON EQUILIBRATED FLUXES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
POSTPROCESSING FOR GUARANTEED ERROR BOUND BASED ON EQUILIBRATED FLUXES
KIM, KWANG-YEON;
  PDF(new window)
 Abstract
In this work we analyze a postprocessing scheme for improving the guaranteed error bound based on the equilibrated fluxes for the P1 conforming FEM. The improved error bound is shown to be asymptotically exact under suitable conditions on the triangulations and the regularity of the true solution. We also present some numerical results to illustrate the effect of the postprocessing scheme.
 Keywords
a posteriori error estimation;equilibrated fluxes;guaranteed error bound;asymptotic exactness;superconvergence;
 Language
English
 Cited by
 References
1.
M. Ainsworth, A framework for obtaining guaranteed error bounds for finite element approximations, J. Comput. Appl. Math. 234 (2010), no. 9, 2618-2632. crossref(new window)

2.
M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, John Wiley & Sons, New York, 2000.

3.
I. Babuska and T. Strouboulis, The Finite Element Method and Its Reliability, Oxford University Press, New York, 2001.

4.
R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators. I. grids with superconvergence, SIAM J. Numer. Anal. 41 (2003), no. 6, 2294-2312. crossref(new window)

5.
R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators. II. general unstructured grids, SIAM J. Numer. Anal. 41 (2003), no. 6, 2313-2332. crossref(new window)

6.
F. A. Bornemann, B. Erdmann, and R. Kornhuber, A posteriori error estimates for elliptic problems in two and three space dimensions, SIAM J. Numer. Anal. 33 (1996), no. 3, 1188-1204 crossref(new window)

7.
D. Braess and J. Schoberl, Equilibrated residual error estimator for edge elements, Math. Comp. 77 (2008), no. 262, 651-672.

8.
C. Carstensen and C. Merdon, Effective postprocessing for equilibration a posteriori error estimators, Numer. Math. 123 (2013), no. 3, 425-459. crossref(new window)

9.
P. Deuflhard, P. Leinen, and H. Yserentant, Concepts of an adaptive hierarchical finite element code, Impact Comput. Sci. Engrg. 1 (1989), no. 1, 3-35. crossref(new window)

10.
P. Destuynder and B. Metivet, Explicit error bounds in a conforming finite element method, Math. Comp. 68 (1999), no. 228, 1379-1396. crossref(new window)

11.
L. Du and N. Yan, Gradient recovery type a posteriori error estimate for finite element approximation on non-uniform meshes, Adv. Comput. Math. 14 (2001), no. 2, 175-193. crossref(new window)

12.
R. Duran, M. A. Muschietti, and R. Rodriguez, On the asymptotic exactness of error estimators for linear triangular finite elements, Numer. Math. 59 (1991), no. 2, 107-127. crossref(new window)

13.
R. Duran and R. Rodriguez, On the asymptotic exactness of Bank-Weiser's estimator, Numer. Math. 62 (1992), no. 3, 297-303. crossref(new window)

14.
P. Ladeveze and D. Leguillon, Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20 (1983), no. 3, 485-509. crossref(new window)

15.
B. Li and Z. Zhang, Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements, Numer. Methods Partial Differential Equations 15 (1999), no. 2, 151-167. crossref(new window)

16.
R. Luce and B. I. Wohlmuth, A local a posteriori error estimator based on equilibrated fluxes, SIAM J. Numer. Anal. 42 (2004), no. 4, 1394-1414. crossref(new window)

17.
A. Maxim, Asymptotic exactness of an a posteriori error estimator based on the equilibrated residual method, Numer. Math. 106 (2007), no. 2, 225-253. crossref(new window)

18.
J. S. Ovall, Function, gradient, and Hessian recovery using quadratic edge-bump functions, SIAM J. Numer. Anal. 45 (2007), no. 3, 1064-1080. crossref(new window)

19.
S. Repin, S. Sauter, and A. Smolianski, A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions, J. Comput. Appl. Math. 164/165 (2004), 601-612. crossref(new window)

20.
T. Vejchodsky, Guaranteed and locally computable a posteriori error estimate, IMA J. Numer. Anal. 26 (2006), no. 3, 525-540.

21.
M. Vohralik, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients, J. Sci. Comput. 46 (2011), no. 3, 397-438. crossref(new window)

22.
J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Math. Comp. 73 (2004), no. 247, 1139-1152.

23.
N. Yan and A. Zhou, Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes, Comput. Methods Appl. Mech. Engrg. 190 (2001), no. 32-33, 4289-4299. crossref(new window)