JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERATION OF CLASS FIELDS BY SIEGEL-RAMACHANDRA INVARIANTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GENERATION OF CLASS FIELDS BY SIEGEL-RAMACHANDRA INVARIANTS
SHIN, DONG HWA;
  PDF(new window)
 Abstract
We show in many cases that the Siegel-Ramachandra invariants generate the ray class fields over imaginary quadratic fields. As its application we revisit the class number one problem done by Heegner and Stark, and present a new proof by making use of inequality argument together with Shimura's reciprocity law.
 Keywords
class field theory;complex multiplication;class numbers;elliptic and modular units;modular and automorphic functions;
 Language
English
 Cited by
 References
1.
A. Baker, Linear forms in the logarithms of algebraic numbers I, Mathematika 13 (1968), 204-216.

2.
B. Baran, A modular curve of level 9 and the class number one problem, J. Number Theory 129 (2009), no. 3, 715-728. crossref(new window)

3.
B. Baran, Normalizers of non-split Cartan subgroups, modular curves, and the class number one problem, J. Number Theory 130 (2010), no. 12, 2753-2772. crossref(new window)

4.
D. A. Cox, Primes of the form $x^2$ + $ny^2$ : Fermat, Class Field, and Complex Multiplication, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989.

5.
M. Deuring, Imaginare quadratische Zahlkorper mit der Klassenzahl Eins, Invent. Math. 5 (1968), 169-179. crossref(new window)

6.
D. R. Dorman, Singular moduli, modular polynomials, and the index of the closure of ${\mathbb{Z}}[j({\tau})]$ in ${\mathbb{Q}}(j({\tau}))$, Math. Ann. 283 (1989), no. 2, 177-191. crossref(new window)

7.
A. Gee, Class invariants by Shimura's reciprocity law, J. Theor. Nombres Bordeaux 11 (1999), no. 1, 45-72. crossref(new window)

8.
B. H. Gross and D. B. Zagier, On singular moduli, J. Reine Angew. Math. 355 (1985), 191-220.

9.
K. Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227-253. crossref(new window)

10.
G. J. Janusz, Algebraic Number Fields, 2nd edition, Grad. Studies in Math. 7, Amer. Math. Soc., Providence, R. I., 1996.

11.
J. K. Koo and D. H. Shin, On some arithmetic properties of Siegel functions, Math. Z. 264 (2010), no. 1, 137-177. crossref(new window)

12.
D. Kubert and S. Lang, Modular Units, Grundlehren der mathematischen Wissenschaften 244, Spinger-Verlag, New York-Berlin, 1981.

13.
E. Landau, Uber die Klassenzahl der binaren quadratischen Formen von negativer Discriminante, Math. Ann. 56 (1903), no. 4, 671-676. crossref(new window)

14.
S. Lang, Introduction to Modular Forms, Grundlehren der mathematischen Wissenschaften, No. 222, Springer-Verlag, Berlin-New York, 1976.

15.
S. Lang, Elliptic Functions, 2nd edn, Grad. Texts in Math. 112, Spinger-Verlag, New York, 1987.

16.
S. Lang, Algebraic Number Theory, 2nd edn, Spinger-Verlag, New York, 1994.

17.
K. Ramachandra, Some applications of Kronecker's limit formula, Ann. of Math. (2) 80 (1964), 104-148.

18.
P. Ribenboim, Classical Theory of Algebraic Numbers, Universitext, Springer-Verlag, New York, 2001.

19.
R. Schertz, Die singularen Werte der Weberschen Funktionen f, $f_1$, $f_2$, ${\gamma}_2$, ${\gamma}_2$, J. Reine Angew. Math. 286/287 (1976), 46-74.

20.
R. Schertz, Construction of ray class fields by elliptic units, J. Theor. Nombres Bordeaux 9 (1997), no. 2, 383-394. crossref(new window)

21.
R. Schertz, Weber's class invariants revisited, J. Theor. Nombres Bordeaux 14 (2002), no. 1, 325-343. crossref(new window)

22.
J.-P. Serre, Lectures on the Mordell-Weil Theorem, Aspects of Mathematics, E15, Vieweg & Sohn, Braunschweig, 1989.

23.
G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton University Press, Princeton, N. J., 1971.

24.
H. M. Stark, A complete determination of the complex quadratic fields of class number one, Michigan Math. J. 14 (1967), 1-27. crossref(new window)

25.
H. M. Stark, On the "gap" in a theorem of Heegner, J. Number Theory 1 (1969), 16-27. crossref(new window)

26.
P. Stevenhagen, Hilbert's 12th problem, complex multiplication and Shimura reciprocity, Class Field Theory-Its Centenary and Prospect (Tokyo, 1998), 161-176, Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo, 2001.

27.
H. Weber, Lehrbuch der Algebra. Vol. III, 2nd edn, Vieweg, Braunschwieg, 1908. (Reprint by Chelsea, New York, 1961.)