JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME POLYNOMIAL INVARIANTS OF WELDED LINKS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME POLYNOMIAL INVARIANTS OF WELDED LINKS
IM, YOUNG HO; LEE, KYEONGHUI; SHIN, MI HWA;
  PDF(new window)
 Abstract
We give a quotient of the ring so that the Miyazawa polynomial is a non-trivial invariant of welded links. Furthermore we show that this is also an invariant under the other forbidden move , and so it is a fused isotopy invariant. Also, we give some quotient ring so that the index polynomial can be an invariant for welded links.
 Keywords
virtual link;welded link;Miyazawa polynomial;index polynomial;fused isotopy;
 Language
English
 Cited by
 References
1.
A. Fish and E. Keyman, Jones polynomial invariants, J. Knot Theory Ramifications 15 (2006), no. 3, 339-350. crossref(new window)

2.
R. Fenn, R. Rimanyi, and C. Rourke, The braid-permutation group, Topology 36 (1997), no. 1, 123-135. crossref(new window)

3.
M. Goussarov, M. Polyak, and O. Viro, Finite type invariants of classical and virtual knots, Topology 39 (2000), no. 5, 1045-1068. crossref(new window)

4.
Y. H. Im, K. Lee, and S. Y. Lee, Index polynomial invariant of virtual links, J. Knot Theory Ramifications 19 (2010), no. 5, 709-725. crossref(new window)

5.
Y. H. Im and K. I. Park, A parity and a multi-variable polynomial invariant for virtual links, J. Knot Theory Ramifications 22 (2013), no. 13, 1350073, 18 pp.

6.
Y. H. Im, K. I. Park, and M. H. Shin, Parities and polynomial invariats for virtual links, preprint.

7.
S. Kamada, Braid presentation of virtual knots and welded knots, Osaka J. Math. 44 (2007), no. 2, 441-458.

8.
N. Kamada and S. Kamada, Abstract link diagrams and virtual knots, J. Knot Theory Ramifications 9 (2000), no. 1, 93-106. crossref(new window)

9.
N. Kamada and Y. Miyazawa, A 2-variable polynomial invariant for a virtual link derived from magnetic graphs, Hiroshima Math. J. 35 (2005), no. 2, 309-326.

10.
T. Kanenobu, Forbidden moves unknot a virtual knot, J. Knot Theory Ramifications 10 (2001), no. 1, 89-96. crossref(new window)

11.
L. Kauffman, Virtual knot theory, European J. Combin. 20 (1999), no. 7, 663-690. crossref(new window)

12.
Y. Miyazawa, Magnetic graphs and an invariant for virtual links, J. Knot Theory Ramifications 15 (2006), no. 10, 1319-1334. crossref(new window)

13.
S. Nelson, Unknotting virtual knots with Guass diagram forbidden moves, J. Knot Theory Ramifications 10 (2001), no. 6, 931-935. crossref(new window)

14.
S. Satoh, Virtual knot presentation of ribbon torus-knots, J. Knot Theory Ramifications 9 (2000), no. 4, 531-542.

15.
B. Winter, The classification of spun torus knots, J. Knot Theory Ramifications 9 (2009), no. 9, 1287-1298.