JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THIRD ORDER HANKEL DETERMINANT FOR CERTAIN UNIVALENT FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THIRD ORDER HANKEL DETERMINANT FOR CERTAIN UNIVALENT FUNCTIONS
BANSAL, DEEPAK; MAHARANA, SUDHANANDA; PRAJAPAT, JUGAL KISHORE;
  PDF(new window)
 Abstract
The estimate of third Hankel determinant $$H_{3,1}(f)
 Keywords
analytic functions;univalent function;close-to-convex functions;starlike functions;Fekete- functional;Hankel determinant;
 Language
English
 Cited by
1.
Bounds on Hankel determinant for starlike and convex functions with respect to symmetric points, Cogent Mathematics, 2016, 3, 1  crossref(new windwow)
2.
Bounds on third Hankel determinant for close-to-convex functions, Acta Universitatis Sapientiae, Mathematica, 2015, 7, 2  crossref(new windwow)
 References
1.
H. R. Abdel-Gawad and D. K. Thomas, The Fekete-Szego problem for strongely closeto-convex functions, Proc. Amer. Math. Soc. 114 (1992), no. 2, 345-349.

2.
K. O. Babalola, On third order Hankel determinant for some classes of univalent functions, Inequal. Theory Appl. 6 (2010), 1-7.

3.
K. O. Babalola and T. O. Opoola, On the coefficients of certain analytic and univalent functions, Advances in Inequalities for Series, (Edited by S. S. Dragomir and A. Sofo) Nova Science Publishers (2008), 5-17.

4.
D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett. 26 (2013), no. 1, 103-107. crossref(new window)

5.
B. Bhowmik, S. Ponnusamy, and K. J. Wirths, On the Fekete-Szego problem for concave univalent functions, J. Math. Anal. Appl. 373 (2011), no. 2, 432-438. crossref(new window)

6.
D. G. Cantor, Power series with integral coefficients, Bull. Amer. Math. Soc. 69 (1963), 362-366. crossref(new window)

7.
P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

8.
R. Ehrenborg, The Hankel determinant of exponential polynomials, Amer. Math. Monthly 107 (2000), no. 6, 557-560. crossref(new window)

9.
M. Fekete and G. Szego, Eine Benberkung uber ungerada Schlichte funktionen, J. Lond. Math. Soc. 8 (1933), 85-89.

10.
W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. Lond. Math. Soc. (3) 18 (1968), 77-94.

11.
A. Janteng, S. Halim, and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math. 7 (2006), no. 2, Article 50, 5 pp.

12.
F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12. crossref(new window)

13.
Y. C. Kim, J. H. Choi, and T. Sugawa, Coefficient bounds and convolution properties for certain classes of close-to-convex functions, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), no. 6, 95-98. crossref(new window)

14.
W. Koepf, On the Fekete-Szego problem for close-to-convex functions, Proc. Amer. Math. Soc. 101 (1987), no. 1, 89-95.

15.
B. Kowalczyk and A. Lecko, The Fekete-Szego inequality for close-to-convex functions with respect to a certain starlike function dependent on a real parameter, J. Inequal. Appl. 2014 (2014), Article 65, 16 pp. crossref(new window)

16.
S. K. Lee, V. Ravichandran, and S. Subramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. 2013 (2013), Article 281, 17 pp. crossref(new window)

17.
J. L. Li and H. M. Srivastava, some questions and conjectures in the theory of univalent functions, Rocky Mountain J. Math. 28 (1998), no. 3, 1035-1041. crossref(new window)

18.
R. J. Libera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982), no. 2, 225-230. crossref(new window)

19.
R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivatives in P, Proc. Amer. Math. Soc. 87 (1983), no. 2, 251-257.

20.
R. R. London, Fekete-Szego inequalities for close-to-convex functions, Proc. Amer. Math. Soc. 117 (1993), no. 4, 947-950.

21.
T. H. Macgregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532-537. crossref(new window)

22.
J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337-346.

23.
K. I. Noor, Higher order close-to-convex functions, Math. Japon. 37 (1992), no. 1, 1-8.

24.
R. Parvatham and S. Ponnusamy (Editors), New Trends in Geometric Function Theory and Application, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1981.

25.
C. Pommerenke, On the coefficients and Hankel determinant of univalent functions, J. Lond. Math. Soc. 41 (1966), 111-122.

26.
S. Ponnusamy, S. K. Sahoo, and H. Yanagihara, Radius of convexity of partial sums of functions in the close-to-convex family, Nonlinear Anal. 95 (2014), 219-228. crossref(new window)

27.
M. Raza and S. N. Malik, Upper bound of the third Hankel determinant for a class of analytic functions related with Lemniscate of Bernoulli, J. Inequal. Appl. 2013 (2013), 412, 8 pp. crossref(new window)

28.
T. V. Sudharsana, S. P. Vijayalakshmi, and B. Adolf Stephen, Third Hankel determinant for a subclass of analytic univalent functions, Malaya J. Mat. 2 (2014), no. 4, 438-444.