JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INSERTION-OF-FACTORS-PROPERTY ON SKEW POLYNOMIAL RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INSERTION-OF-FACTORS-PROPERTY ON SKEW POLYNOMIAL RINGS
BASER, MUHITTIN; HICYILMAZ, BEGUM; KAYNARCA, FATMA; KWAK, TAI KEUN; LEE, YANG;
  PDF(new window)
 Abstract
In this paper, we investigate the insertion-of-factors-property (simply, IFP) on skew polynomial rings, introducing the concept of strongly for a ring endomorphism . A ring R is said to have strongly if the skew polynomial ring R[x;] has IFP. We examine some characterizations and extensions of strongly rings in relation with several ring theoretic properties which have important roles in ring theory. We also extend many of related basic results to the wider classes, and so several known results follow as consequences of our results.
 Keywords
strongly ring;(strongly) IFP ring;-rigid ring;skew poly-nomial ring;Dorroh extension;matrix ring;
 Language
English
 Cited by
 References
1.
M. Baser, A. Harmanci, and T. K. Kwak, Generalized semicommutative rings and their extensions, Bull. Korean Math. Soc. 45 (2008), no. 2, 285-297. crossref(new window)

2.
M. Baser, T. K. Kwak, and Y. Lee, The McCoy condition on skew polynomial rings, Comm. Algebra 37 (2009), no. 11, 4026-4037. crossref(new window)

3.
H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. crossref(new window)

4.
P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. crossref(new window)

5.
J. L. Dorroh, Concerning adjunctins to algebras, Bull. Amer. Math. Soc. 38 (1932), 85-88. crossref(new window)

6.
K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 1989.

7.
Y. Hirano, On the uniqueness of rings of coefficients in skew polynomial rings, Publ. Math. Debrecen 54 (1999), no. 3-4, 489-495.

8.
C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra. 151 (2000), no. 3, 215-226. crossref(new window)

9.
C. Y. Hong, N. K. Kim, and T. K. Kwak, On skew Armendariz rings, Comm. Algebra 31 (2003), no. 1, 103-122. crossref(new window)

10.
C. Y. Hong, N. K. Kim, and Y. Lee, Skew polynomial rings over semiprime rings, J. Korean Math. Soc. 47 (2010), no. 5, 879-897. crossref(new window)

11.
C. Y. Hong, N. K. Kim, and Y. Lee, Extensions of McCoy's theorem, Glasgow Math. J. 52 (2010), no. 1, 155-159. crossref(new window)

12.
C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Extensions of generalized Armendariz rings, Algebra Colloq. 13 (2006), no. 2, 253-266. crossref(new window)

13.
C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. crossref(new window)

14.
D. A. Jordan, Bijective extensions of injective rings endomorphism, J. London Math. Soc. 25 (1982), no. 3, 435-448.

15.
F. Kaynarca, T. K. Kwak, and Y. Lee, Reversibility of skew polynomial rings (submitted).

16.
N. K. Kim, T. K. Kwak, and Y. Lee, Insertion-of-factors-property skewed by ring en- domorphisms, Taiwanese J. Math. 18 (2014), no. 3, 849-869.

17.
N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223. crossref(new window)

18.
J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.

19.
T. K. Kwak, Y. Lee, and S. J. Yun, The Armendariz property on ideals, J. Algebra 354 (2012), 121-135. crossref(new window)

20.
J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.

21.
N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295. crossref(new window)

22.
L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71-73, Bib. Nat., Paris, 1982.

23.
A. R. Nasr-Isfahani and A. Moussavi, Skew Laurent polynomial extensions of Baer and p.p.-rings, Bull. Korean Math. Soc. 46 (2009), no. 6, 1041-1050.

24.
P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), 134-141. crossref(new window)

25.
M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. crossref(new window)

26.
G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. crossref(new window)