JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LAGRANGE MULTIPLIER METHOD FOR SOLVING VARIATIONAL INEQUALITY IN MECHANICS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LAGRANGE MULTIPLIER METHOD FOR SOLVING VARIATIONAL INEQUALITY IN MECHANICS
NAMM, ROBERT V.; WOO, GYUNGSOO;
  PDF(new window)
 Abstract
Lagrange multiplier method for solving the contact problem in elasticity is considered. Based on lower semicontinuity of sensitivity functional we prove the convergence of modified dual scheme to corresponding saddle point.
 Keywords
Lagrange multiplier method;duality method;semicoercive contact problem;
 Language
English
 Cited by
 References
1.
G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976; Nauka, Moscow, 1980.

2.
I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.

3.
G. Fikera, Existence Theorems in Elasticity, Springer-Verlag, Berlin, 1976; Nauka, Moscow, 1980.

4.
S. Fucik and A. Kufner, Nonlinear Differential Equations, Mir, Moscow, 1988.

5.
I. Hlavacek, Ya. Haslinger, I. Nechas, and Ya. Lovishek, Numerical Solution of Variational Inequalities, Springer-Verlag, Berlin, 1988; Mir, Moscow, 1986.

6.
L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon, Oxford, 1982.

7.
A. M. Khludnev, Elasticity Problems in Non-Smooth Domains, Fizmatlit, Moscow, 2010.

8.
N. Kikuchi and J. T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988.

9.
W. Maclean, Strongly Elliptic Systems and Boundary Integrals Equations, University Press, Cambridge, 2000.

10.
R. V. Namm and S. A. Sachkov, Solving the quasi-variational Signorini inequality by the method of successive approximations, Zh. Vychisl. Mat. Mat. Fiz. 49 (2009), no. 5, 805-814; translation in Comp. Math. and Math. Phys. 49 (2009), no. 5, 776-785.

11.
R. V. Namm and E. M. Vikhtenko, Modified Lagrangian functional for solving the sig- norini problem with friction, Advances in Mechanics Research, Nova Science Publishers, New-York 1 (2011), 435-446.

12.
R. V. Namm, G. Woo, S.-S. Xie, and S. Yi, Solution of semicoercive signorini problem based on a duality scheme with modified lagrangian functional, J. Korean Math. Soc. 49 (2012), no. 4, 843-854. crossref(new window)

13.
B. T. Polyak, Introduction to Optimization, Nauka, Moscow, 1980.

14.
E. M. Vikhtenko and R. V. Namm, A duality scheme for solving the semi-coercive Signorini problem with friction, Zh. Vychisl. Mat. Mat. Fiz. 47 (2007), no. 12, 2023-2036; translation in Comput. Math. Math. Phys. 47 (2007), no. 12, 1938-1951.

15.
E. M. Vikhtenko, G. Woo, and R. V. Namm, Sensitivity functionals in contact problems of elasticity theory, Comput. Math. Math. Phys. 54 (2014), no. 7, 1190-1200. crossref(new window)

16.
G. Woo, R. V. Namm, and S. A. Sachkov, An iterative method of search for a saddle point for a semicoercive signorini problem based on a modified lagrangian functional, Zh. Vychisl. Mat. Mat. Fiz. 46 (2006), no. 1, 26-36; translation in Comp. Math. and Math. Phys. 46 (2006), no. 1, 23-33.