LAGRANGE MULTIPLIER METHOD FOR SOLVING VARIATIONAL INEQUALITY IN MECHANICS

- Journal title : Journal of the Korean Mathematical Society
- Volume 52, Issue 6, 2015, pp.1195-1207
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/JKMS.2015.52.6.1195

Title & Authors

LAGRANGE MULTIPLIER METHOD FOR SOLVING VARIATIONAL INEQUALITY IN MECHANICS

NAMM, ROBERT V.; WOO, GYUNGSOO;

NAMM, ROBERT V.; WOO, GYUNGSOO;

Abstract

Lagrange multiplier method for solving the contact problem in elasticity is considered. Based on lower semicontinuity of sensitivity functional we prove the convergence of modified dual scheme to corresponding saddle point.

Keywords

Lagrange multiplier method;duality method;semicoercive contact problem;

Language

English

Cited by

References

1.

G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976; Nauka, Moscow, 1980.

2.

I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.

3.

G. Fikera, Existence Theorems in Elasticity, Springer-Verlag, Berlin, 1976; Nauka, Moscow, 1980.

4.

S. Fucik and A. Kufner, Nonlinear Differential Equations, Mir, Moscow, 1988.

5.

I. Hlavacek, Ya. Haslinger, I. Nechas, and Ya. Lovishek, Numerical Solution of Variational Inequalities, Springer-Verlag, Berlin, 1988; Mir, Moscow, 1986.

6.

L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon, Oxford, 1982.

7.

A. M. Khludnev, Elasticity Problems in Non-Smooth Domains, Fizmatlit, Moscow, 2010.

8.

N. Kikuchi and J. T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988.

9.

W. Maclean, Strongly Elliptic Systems and Boundary Integrals Equations, University Press, Cambridge, 2000.

10.

R. V. Namm and S. A. Sachkov, Solving the quasi-variational Signorini inequality by the method of successive approximations, Zh. Vychisl. Mat. Mat. Fiz. 49 (2009), no. 5, 805-814; translation in Comp. Math. and Math. Phys. 49 (2009), no. 5, 776-785.

11.

R. V. Namm and E. M. Vikhtenko, Modified Lagrangian functional for solving the sig- norini problem with friction, Advances in Mechanics Research, Nova Science Publishers, New-York 1 (2011), 435-446.

12.

R. V. Namm, G. Woo, S.-S. Xie, and S. Yi, Solution of semicoercive signorini problem based on a duality scheme with modified lagrangian functional, J. Korean Math. Soc. 49 (2012), no. 4, 843-854.

13.

B. T. Polyak, Introduction to Optimization, Nauka, Moscow, 1980.

14.

E. M. Vikhtenko and R. V. Namm, A duality scheme for solving the semi-coercive Signorini problem with friction, Zh. Vychisl. Mat. Mat. Fiz. 47 (2007), no. 12, 2023-2036; translation in Comput. Math. Math. Phys. 47 (2007), no. 12, 1938-1951.

15.

E. M. Vikhtenko, G. Woo, and R. V. Namm, Sensitivity functionals in contact problems of elasticity theory, Comput. Math. Math. Phys. 54 (2014), no. 7, 1190-1200.

16.

G. Woo, R. V. Namm, and S. A. Sachkov, An iterative method of search for a saddle point for a semicoercive signorini problem based on a modified lagrangian functional, Zh. Vychisl. Mat. Mat. Fiz. 46 (2006), no. 1, 26-36; translation in Comp. Math. and Math. Phys. 46 (2006), no. 1, 23-33.