JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INFRA-SOLVMANIFOLDS OF Sol14
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INFRA-SOLVMANIFOLDS OF Sol14
LEE, KYUNG BAI; THUONG, SCOTT;
  PDF(new window)
 Abstract
The purpose of this paper is to classify all compact manifolds modeled on the 4-dimensional solvable Lie group , and more generally, the crystallographic groups of . The maximal compact subgroup of Isom() is . We shall exhibit an infra-solvmanifold of whose holonomy is . This implies that all possible holonomy groups do occur; the trivial group, (5 families), , (5 families), and (2 families).
 Keywords
solvmanifolds;infra-solvmanifolds;;;Bieberbach theorems;crystallographic groups;
 Language
English
 Cited by
 References
1.
H. Brown, R. Bulow, J. Neubuser, H. Wondratschek, and H. Zassenhaus, Crystallo-graphic Groups of Four-Dimensional Space, A.M.S., Wiley Monographs in Crystallography, 1978.

2.
K. Brown, Cohomology of Groups, GTM 87, Springer-Verlag New York, 1982.

3.
J. T. Campbell and E. C. Trouy, When are two elements of GL(2, $\mathbb{Z}$) similar?, Linear Algebra Appl. 157 (1991), 175-184. crossref(new window)

4.
R. Cobb, Infrasolvmanifolds of Dimension Four, Ph.D. thesis, The University of Sydney, 1999.

5.
K. Dekimpe, Almost-Bieberbach Groups: Affine and Polynomial Structures, Lecture Notes in Mathematics, Springer-Verlag, 1996.

6.
K. Dekimpe, K. B. Lee, and F. Raymond, Bieberbach theorems for solvable Lie groups, Asian J. Math. 5 (2001), no. 3, 499-508.

7.
K. Y. Ha and J. B. Lee, Crystallographic groups of Sol, Math. Nachr. 286 (2013), no. 16, 1614-667. crossref(new window)

8.
J. A. Hillman, Four-Manifolds, Geometries, and Knots, GT Monographs 5, Geometry and Topology Publications, 2002.

9.
J. A. Hillman, Geometries and infra-solvmanifolds in dimension 4, Geom. Dedicata 129 (2007), 57-72. crossref(new window)

10.
J. A. Hillman, $Sol^3{\times}{\mathbb{E}}^1$-manifolds, arXiv:1304.2436v2[math.GT], 18 Apr 2013.

11.
K. B. Lee and F. Raymond, Seifert Fiberings, A.M.S., Mathematical Surveys and Mono-graphs, vol 166, 2010.

12.
S. Mac Lane, Homology, Die Grundlehren der Math., Wissenschaften, vol. 114, Springer-Verlag Berlin Heidelberg New York, 1975.

13.
J. Milnor, On fundamental groups of complete affinely flat manifolds, Adv. Math. 25 (1977), no. 2, 178-187. crossref(new window)

14.
G. D. Mostow, Self-adjoint groups, Ann. of Math. 62 (1955), 44-55. crossref(new window)

15.
M. S. Raghunathan, Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 68, Springer-Verlag, 1972.

16.
P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401-487. crossref(new window)

17.
Wolfram Research, Mathematica, version 9, 2013.