JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EXACTNESS OF IDEAL TRANSFORMS AND ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EXACTNESS OF IDEAL TRANSFORMS AND ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES
BAHMANPOUR, KAMAL;
  PDF(new window)
 Abstract
Let (R, m) be a commutative Noetherian local domain, M a non-zero finitely generated R-module of dimension n > 0 and I be an ideal of R. In this paper it is shown that if () be a sub-set of a system of parameters for M, then the R-module (R) is faithful, i.e., Ann (R)
 Keywords
cohomological dimension;ideal transform;local cohomology;Noetherian ring;
 Language
English
 Cited by
1.
A note on Lynch's conjecture, Communications in Algebra, 2016  crossref(new windwow)
 References
1.
K. Bahmanpour, Annihilators of local cohomology modules, Comm. Algebra 43 (2015), no. 6, 2509-2515. crossref(new window)

2.
K. Bahmanpour, J. A'zami, and G. Ghasemi, On the annihilators of local cohomology modules, J. Algebra 363 (2012), no. 1, 8-13. crossref(new window)

3.
K. Bahmanpour and R. Naghipour, Associated primes of local cohomology modules and Matlis duality, J. Algebra 320 (2008), no. 6, 2632-2641. crossref(new window)

4.
M. P. Brodmann and R. Y. Sharp, Local Cohomology: an algebraic introduction with geometric applications, Cambridge University Press, Cambridge, 1998.

5.
K. Divaani-Aazar, R. Naghipour, and M. Tousi, Cohomological dimension of certain algebraic varieties, Proc. Amer. Math. Soc. 130 (2002), no. 12, 3537-3544. crossref(new window)

6.
G. Ghasemi, K. Bahmanpour, and J. A'zami, Upper bounds for the cohomological dimensions of finitely generated modules over a commutative Noetherian ring, Colloq. Math. 137 (2014), no. 2, 263-270. crossref(new window)

7.
A. Grothendieck, Local cohomology, Notes by R. Hartshorne, Lecture Notes in Math., 862, Springer, New York, 1966.

8.
M. Hellus, On the set of Associated primes of a local cohomology module, J. Algebra 237 (2001), no. 1, 406-419. crossref(new window)

9.
C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Camb. Phil. Soc. 110 (1991), no. 3, 421-429. crossref(new window)

10.
L. R. Lynch, Annihilators of top local cohomology, Comm. Algebra 40 (2012), no. 2, 542-551. crossref(new window)

11.
G. Lyubeznik, Finiteness properties of local cohomology modules (an application of D-modules to commutative algebra), Invent. Math. 113 (1993), no. 1, 41-55. crossref(new window)

12.
H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, Cambridge, UK, 1986.

13.
A. A. Mehrvarz, K. Bahmanpour, and R. Naghipour, Arithmetic rank, cohomological dimension and filter regular sequences, J. Algebra Appl. 8 (2009), no. 6, 855-862. crossref(new window)

14.
L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285 (2005), no. 2, 649-668. crossref(new window)

15.
L. T. Nhan and T. N. An, On the unmixedness and universal catenaricity of local rings and local cohomology, J. Algebra 321 (2009), no. 1, 303-311. crossref(new window)

16.
L. T. Nhan and T. D. M. Chau, On the top local cohomology modules, J. Algebra 349 (2012), 342-352. crossref(new window)

17.
B. Sadeghi, K. Bahmanpour, and J. A'zami, Artinian cofinite modules over complete Noetherian local rings, Czechoslovak Math. J. 63(138) (2013), no. 4, 877-885. crossref(new window)

18.
P. Schenzel, Cohomological annihilators, Math. Proc. Camb. Phil. Soc. 91 (1982), no. 3, 345-350. crossref(new window)

19.
P. Schenzel, Proregular sequences, local cohomology, and completion, Math. Scand. 92 (2003), no. 2, 161-180.

20.
P. Schenzel, N. V. Trung, and N. T. Cuong, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57-73. crossref(new window)