JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON SKEW SYMMETRIC OPERATORS WITH EIGENVALUES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON SKEW SYMMETRIC OPERATORS WITH EIGENVALUES
ZHU, SEN;
  PDF(new window)
 Abstract
An operator T on a complex Hilbert space H is called skew symmetric if T can be represented as a skew symmetric matrix relative to some orthonormal basis for H. In this paper, we study skew symmetric operators with eigenvalues. First, we provide an upper-triangular operator matrix representation for skew symmetric operators with nonzero eigenvalues. On the other hand, we give a description of certain skew symmetric triangular operators, which is based on the geometric relationship between eigenvectors.
 Keywords
skew symmetric operator;complex symmetric operator;eigenvalue;triangular operator;
 Language
English
 Cited by
 References
1.
N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Dover Publications, Inc., New York, 1993.

2.
Y. Chen, H. Koo, and Y. J. Lee, Ranks of commutators of Toeplitz operators on the harmonic Bergman space, Integral Equations Operator Theory 75 (2013), no. 1, 31-38. crossref(new window)

3.
Y. Chen, H. Koo, and Y. J. Lee, Ranks of complex skew symmetric operators and applications to Toeplitz operators, J. Math. Anal. Appl. 425 (2015), no. 2, 734-747. crossref(new window)

4.
N. Chevrot, E. Fricain, and D. Timotin, The characteristic function of a complex sym- metric contraction, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2877-2886 (electronic). crossref(new window)

5.
M. J. Cowen and R. G. Douglas, Complex geometry and operator theory, Acta Math. 141 (1978), no. 3-4, 187-261. crossref(new window)

6.
C. Fong and C. L. Jiang, Normal operators similar to irreducible operators, Acta Math. Sinica (N.S.) 10 (1994), no. 2, 132-135. crossref(new window)

7.
S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1285-1315 (electronic).

8.
S. R. Garcia and M. Putinar, Complex symmetric operators and applications. II, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3913-3931 (electronic). crossref(new window)

9.
S. R. Garcia and W. R. Wogen, Complex symmetric partial isometries, J. Funct. Anal. 257 (2009), no. 4, 1251-1260. crossref(new window)

10.
T. M. Gilbreath and W. R. Wogen, Remarks on the structure of complex symmetric operators, Integral Equations Operator Theory 59 (2007), no. 4, 585-590. crossref(new window)

11.
K. Guo, Y. Ji, and S. Zhu, A $C^{\ast}$-algebra approach to complex symmetric operators, Trans. Amer. Math. Soc., doi: 10.1090/S0002-9947-2015-06215-1. crossref(new window)

12.
K. Guo and S. Zhu, A canonical decomposition of complex symmetric operators, J. Operator Theory 72 (2014), no. 2, 529-547. crossref(new window)

13.
C. G. Li and T. T. Zhou, Skew symmetry of a class of operators, Banach J. Math. Anal. 8 (2014), no. 1, 279-294. crossref(new window)

14.
C. G. Li and S. Zhu, Skew symmetric normal operators, Proc. Amer. Math. Soc. 141 (2013), no. 8, 2755-2762. crossref(new window)

15.
S. M. Zagorodnyuk, On a J-polar decomposition of a bounded operator and matrices of J-symmetric and J-skew-symmetric operators, Banach J. Math. Anal. 4 (2010), no. 2, 11-36. crossref(new window)

16.
S. M. Zagorodnyuk, On the complex symmetric and skew-symmetric operators with a simple spectrum, Symmetry Integrability Geom. Methods Appl. 7 (2011), 1-9.

17.
S. Zhu, Approximate unitary equivalence to skew symmetric operators, Complex Anal. Oper. Theory 8 (2014), no. 7, 1565-1580. crossref(new window)

18.
S. Zhu, Skew symmetric weighted shifts, Banach J. Math. Anal. 9 (2015), no. 1, 253-272.

19.
S. Zhu and C. G. Li, Complex symmetric weighted shifts, Trans. Amer. Math. Soc. 365 (2013), no. 1, 511-530.

20.
S. Zhu and J. Zhao, The Riesz decomposition theorem for skew symmetric operators, J. Korean Math. Soc. 52 (2015), no. 2, 403-416. crossref(new window)