JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HAUSDORFF TOPOLOGY INDUCED BY THE FUZZY METRIC AND THE FIXED POINT THEOREMS IN FUZZY METRIC SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HAUSDORFF TOPOLOGY INDUCED BY THE FUZZY METRIC AND THE FIXED POINT THEOREMS IN FUZZY METRIC SPACES
WU, HSIEN-CHUNG;
  PDF(new window)
 Abstract
The Hausdorff topology induced by a fuzzy metric space under more weak assumptions is investigated in this paper. Another purpose of this paper is to obtain the Banach contraction theorem in fuzzy metric space based on a natural concept of Cauchy sequence in fuzzy metric space.
 Keywords
Banach contraction theorem;contractive mapping;fuzzy metric space;Hausdorff topology;triangular norm;
 Language
English
 Cited by
 References
1.
C. Alaca, D. Turkoglu, and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 29 (2006), no. 5, 1073-1078. crossref(new window)

2.
S. S. Chang, Y. J. Cho, and S. M. Kang, Nonlinear operator theory in probabilistic metric space, Nova Science Publishers, New York, 2001.

3.
A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), no. 3, 395-399. crossref(new window)

4.
A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems 90 (1997), no. 3, 365-368. crossref(new window)

5.
M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27 (1988), no. 3, 385-389. crossref(new window)

6.
V. Gregori and S. Romaguera, On completion of fuzzy metric spaces, Fuzzy Sets and Systems 130 (2002), no. 3, 399-404. crossref(new window)

7.
V. Gregori, S. Romaguera, and A. Sapena, A note on intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 28 (2006), no. 4, 902-905. crossref(new window)

8.
V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 125 (2002), no. 2, 245-252. crossref(new window)

9.
O. Hadzic and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Klumer Academic Publishers, 2001.

10.
O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12 (1984), no. 3, 215-229. crossref(new window)

11.
I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika 11 (1975), no. 5, 336-344.

12.
B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334. crossref(new window)

13.
B. Schweizer and A. Sklar, Triangle inequalities in a class of statistical metric spaces, J. London Math. Soc. 38 (1963), 401-406.

14.
B. Schweizer, A. Sklar, and E. Thorp, The metrization of statistical metric spaces, Pacific J. Math. 10 (1960), 673-675. crossref(new window)

15.
S. Sharma and B. Deshpande, Common fixed point theorems for finite numbers of map-pings without continuity and compatibility on intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 40 (2009), no. 5, 2242-2256. crossref(new window)

16.
G. Song, Comments on "A common fixed point theorem in a fuzzy metric space", Fuzzy Sets and Systems 135 (2003), no. 3, 409-413. crossref(new window)

17.
P. V. Subrahmanyam, A common fixed point theorem in fuzzy metric spaces, Inform. Sci. 83 (1995), no. 3-4, 109-112. crossref(new window)

18.
R. Vasuki and P. Veeramani, Fixed point theorems and cauchy sequences in fuzzy metric spaces, Fuzzy Sets and Systems 135 (2003), no. 3, 415-417. crossref(new window)