JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ASYMPTOTIC BEHAVIORS OF SOLUTIONS FOR AN AEROTAXIS MODEL COUPLED TO FLUID EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ASYMPTOTIC BEHAVIORS OF SOLUTIONS FOR AN AEROTAXIS MODEL COUPLED TO FLUID EQUATIONS
CHAE, MYEONGJU; KANG, KYUNGKEUN; LEE, JIHOON;
  PDF(new window)
 Abstract
We consider a coupled system of Keller-Segel type equations and the incompressible Navier-Stokes equations in spatial dimension two. We show temporal decay estimates of solutions with small initial data and obtain their asymptotic profiles as time tends to infinity.
 Keywords
asymptotic behavior;Keller-Segel;Navier-Stokes equations;
 Language
English
 Cited by
 References
1.
E. A. Carlen and M. Loss, Optimal smoothing and decay estimates for viscously damped conservation laws, with applications to the 22-D Navier-Stokes equation, Duke Math. J. 81 (1995), no. 1, 135-157. crossref(new window)

2.
A. Carpio, Asymptotic behavior for the vorticity equations in dimensions two and three, Comm. Partial Differential Equations 19 (1994), no. 5-6, 827-872. crossref(new window)

3.
M. Chae, K. Kang, and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Cont. Dyn. Syst. A 33 (2013), no. 6, 2271-2297.

4.
M. Chae, Global existence and temporal decay in Keller-Segel models coupled to fiuid equations, Comm. Partial Diff. Equations 39 (2014), no. 7, 1205-1235. crossref(new window)

5.
A. Chertock, K. Fellner, A. Kurganov, A. Lorz, and P. A. Markowich, Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach, J. Fluid Mech. 694 (2012), 155-190. crossref(new window)

6.
Y.-S. Chung, K. Kang, and J. Kim, Global existence of weak solutions for a Keller-Segel- fluid model with nonlinear diffusion, J. Korean Math. Soc. 51 (2014), no. 3, 635-654. crossref(new window)

7.
R. Duan, A. Lorz, and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations 35 (2010), no. 9, 1635-1673. crossref(new window)

8.
M. D. Francesco, A. Lorz, and P. Markowich, Chemotaxis-fluid coupled model for swim- ming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Cont. Dyn. Syst. A 28 (2010), no. 4, 1437-1453. crossref(new window)

9.
T. Gallay and C. E. Wayne, Global stability of vortex solutions of the two dimensional Navier-Stokes equation, Comm. Math. Phys. 255 (2005), no. 1, 97-129. crossref(new window)

10.
M. Giga, Y. Giga, and J. Saal, Nonlinear Partial Differential Equations, Asymptotic Behavior of Solutions and Self-Similar Solutions, Birkhauser Boston, 2010.

11.
M. Giga and T. Kambe, Large time behavior of the vorticity of two-dimensional viscous flow and its application to vortex formation, Comm. Math. Phys. 117 (1988), no. 4, 549-568. crossref(new window)

12.
M. A. Herrero and J. L. L. Velazquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Ser. 24 (1997), no. 4, 633-683.

13.
D. Horstman, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresber. Deutsch. Math.-Verein. 105 (2003), no. 3, 103-165.

14.
D. Horstman, From 1970 until present: The Keller-Segel model in chemotaxis and its conse- quences II, Jahresber. Deutsch. Math.-Verein. 106 (2004), no. 2, 51-69.

15.
W. Jager and S. Luckhaus, On explosions of solutions to s system of partial differential equations modeling chemotaxis, Trans. Amer. Math. Soc. 329 (1992), no. 2, 819-824. crossref(new window)

16.
E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewd as an instability, J. Theor. Biol. 26 (1970), no. 3, 399-415. crossref(new window)

17.
E. F. Keller, Model for chemotaxis, J. Theor. Biol. 30 (1971), no. 2, 225-234. crossref(new window)

18.
A. Lorz, Coupled chemotaxis fluid model, Math. Models Methods Appl. Sci. 20 (2010), no. 6, 987-1004. crossref(new window)

19.
T. Nagai, T. Senba, and K. Yoshida, Applications of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial Ekvac. 40 (1997), no. 3, 411-433.

20.
Y. Naito, Asymptotically self-similar solutions for the parabolic system modelling chemotaxis, Banach center publications, 74, 149-160, 2006.

21.
K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial. Ekvac. 44 (2001), no. 3, 441-469.

22.
C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15 (1953), 311-338. crossref(new window)

23.
R. Schweyer, Stable blow-up dynamic for the parabolic-parabolic Patlak-Keller-Segel model, arXiv:1403.4975v1.

24.
Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Cont. Dyn. Syst. A 32 (2012), no. 5, 1901-1914. crossref(new window)

25.
I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler, and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, PNAS 102 (2005), no. 7, 2277-2282. crossref(new window)

26.
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations 248 (2012), no. 12, 2889-2995.

27.
M. Winkler, Global large data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations 37 (2012), no. 2, 319-351. crossref(new window)

28.
M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal. 211 (2014), no. 2, 455-487. crossref(new window)