A LINK BETWEEN ORDERED TREES AND GREEN-RED TREES

- Journal title : Journal of the Korean Mathematical Society
- Volume 53, Issue 1, 2016, pp.187-199
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/JKMS.2016.53.1.187

Title & Authors

A LINK BETWEEN ORDERED TREES AND GREEN-RED TREES

CHEON, GI-SANG; KIM, HANA; SHAPIR, LOUIS W.;

CHEON, GI-SANG; KIM, HANA; SHAPIR, LOUIS W.;

Abstract

The r-ary number sequences given by are analogs of the sequence of the Catalan numbers . Their history goes back at least to Lambert [8] in 1758 and they are of considerable interest in sequential testing. Usually, the sequences are considered separately and the generalizations can go in several directions. Here we link the various r first by introducing a new combinatorial structure related to GR trees and then algebraically as well. This GR transition generalizes to give r-ary analogs of many sequences of combinatorial interest. It also lets us find infinite numbers of combinatorially defined sequences that lie between the Catalan numbers and the Ternary numbers, or more generally, between and .

Keywords

r-ary numbers;Riordan array;green-red tree;

Language

English

References

1.

D. Davenport, L. Shapiro, and L. Woodson, The oldest child tree, Congr. Numer. 213 (2012), 123-131.

3.

E. Deutsch, Ordered trees with prescribed root degrees, node degrees, and branch lengths, Discrete Math. 282 (2004), no. 1-3, 89-94.

4.

5.

P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, Cambridge, 2009.

6.

R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics, 2nd Ed., Addison-Wesley, 1994.

7.

S. Heubach, N. Y. Li, and T. Mansour, A garden of k-Catalan structures, 2008. Available at: http://web.calstatela.edu/faculty/sheubac/papers/k-Catalan%20structures.pdf

8.

J. H. Lambert, Observations variae in Mathesin puram, Acta Helvetica 3 (1758), 128- 168.

9.

D. Merlini, D. G. Rogers, R. Sprugnoli, and M. C. Verri, On some alternative charac- terizations of Riordan arrays, Canad. J. Math. 49 (1997), no. 2, 301-320.

10.

J. H. Relethford, Human Population Genetics, 1st ed., Wiley-Blackwell, 2012.

11.

L. Shapiro, S. Getu, W.-J. Woan, and L. Woodson, The Riordan group, Discrete Appl. Math. 34 (1991), no. 1-3, 229-239.

12.

N. J. A. Sloane, The On-Line Encyclopedia of lnteger Sequences, http://www.research.att.com/-njas/sequences.

13.

14.

R. P. Stanley, Enumerative Combinatorics, Cambridge University Press, Cambridge, 1999.

15.

R. P. Stanley, Catalan Numbers, 1st Ed., Cambridge University Press, New York, 2015.