JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SECOND-ORDER SYMMETRIC DUALITY IN MULTIOBJECTIVE PROGRAMMING OVER CONES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SECOND-ORDER SYMMETRIC DUALITY IN MULTIOBJECTIVE PROGRAMMING OVER CONES
GULATI, TILAK RAJ; MEHNDIRATTA, GEETA;
  PDF(new window)
 Abstract
In this paper, some omissions in Mishra and Lai [13], have been pointed out and their corrective measures have been discussed briefly.
 Keywords
nonlinear programming;multiobjective programming;efficient solutions;second-order symmetric duality;K--bonvexity;
 Language
English
 Cited by
 References
1.
I. Ahmad, Second order symmetric duality in nondifferentiable multiobjective programming, Inform. Sci. 173 (2005), no. 1-3, 23-34. crossref(new window)

2.
I. Ahmad and Z. Husain, Nondifferentiable second order symmetric duality in multiobjective programming, Appl. Math. Lett. 18 (2005), no. 7, 721-728. crossref(new window)

3.
M. S. Bazaraa and J. J. Goode, On symmetric duality in nonlinear programming, Operations Res. 21 (1973), 1-9. crossref(new window)

4.
G. B. Dantzig, E. Eisenberg, and R. W. Cottle, Symmetric dual nonlinear programs, Pacific J. Math. 15 (1965), 809-812. crossref(new window)

5.
G. Devi, Symmetric duality for nonlinear programming problem involving-bonvex functions, European J. Operational Research 104 (1998), 615-621. crossref(new window)

6.
W. S. Dorn, A symmetric dual theorem for quadratic programs, J. Operations Research Society of Japan 2 (1960), 93-97.

7.
T. R. Gulati, S. K. Gupta, and I. Ahmad, Second-order symmetric duality with cone constraints, J. Comput. Appl. Math. 220 (2008), no. 1-2, 347-354. crossref(new window)

8.
T. R. Gulati and G. Mehndiratta, Nondifferentiable multiobjective Mond-Weir type second-order symmetric duality over cones, Optim. Lett. 4 (2010), no. 2, 293-309. crossref(new window)

9.
S. H. Hou and X. M. Yang, On second-order symmetric duality in nondifferentiable programming, J. Math. Anal. Appl. 255 (2001), no. 2, 491-498. crossref(new window)

10.
S. Khurana, Symmetric duality in multiobjective programming involving generalized cone-index functions, European J. Oper. Res. 165 (2005), no. 3, 592-597. crossref(new window)

11.
O. L. Mangasarian, Second and higher-order duality in nonlinear programming, J. Math. Anal. Appl. 51 (1975), no. 3, 607-620. crossref(new window)

12.
S. K. Mishra, Multiobjective second order symmetric duality with cone constraints, European J. Oper. Res. 126 (2000), no. 3, 675-682. crossref(new window)

13.
S. K. Mishra and K. K. Lai, Second order symmetric duality in multiobjective program- ming involving generalized cone-invex functions, European J. Oper. Res. 178 (2007), no. 1, 20-26. crossref(new window)

14.
S. K. Suneja, S. Aggarwal, and S. Davar, Multiobjective symmetric duality involving cones, European J. Oper. Res. 141 (2002), no. 3, 471-479. crossref(new window)

15.
S. K. Suneja, C. S. Lalitha, and S. Khurana, Second order symmetric duality in multi- objective programming, European J. Oper. Res. 144 (2003), no. 3, 492-500. crossref(new window)

16.
X. M. Yang, X. Q. Yang, K. L. Teo, and S. H. Hou, Multiobjective second-order sym- metric duality with F-convexity, European J. Oper. Res. 165 (2005), no. 3, 585-591. crossref(new window)