JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ANALYTIC EXTENSIONS OF M-HYPONORMAL OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ANALYTIC EXTENSIONS OF M-HYPONORMAL OPERATORS
MECHERI, SALAH; ZUO, FEI;
  PDF(new window)
 Abstract
In this paper, we introduce the class of analytic extensions of M-hyponormal operators and we study various properties of this class. We also use a special Sobolev space to show that every analytic extension of an M-hyponormal operator T is subscalar of order 2k + 2. Finally we obtain that an analytic extension of an M-hyponormal operator satisfies Weyl`s theorem.
 Keywords
M-hyponormal operator;Bishop`s property ();subscalar operator;Weyl`s theorem;
 Language
English
 Cited by
 References
1.
P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer Academic Publishers, London, 2004.

2.
P. Aiena, E. Aponte, and E. Balzan, Weyl type theorems for left and right polaroid operators, Integral Equations Operator Theory 66 (2010), no. 1, 1-20. crossref(new window)

3.
P. Aiena, M. Cho, and M. Gonzalez, Polaroid type operators under quasi-affinities, J. Math. Anal. Appl. 371 (2010), no. 2, 485-495. crossref(new window)

4.
S. K. Berberian, The Weyl spectrum of an operator, Indiana Univ. Math. J. 20 (1970), 529-544. crossref(new window)

5.
S. Brown, Hyponormal operators with thick spectra have invariant subspaces, Ann. of Math. 125 (1987), no. 1, 93-103. crossref(new window)

6.
X. H. Cao, Analytically class A operators and Weyl's theorem, J. Math. Anal. Appl. 320 (2006), no. 2, 795-803. crossref(new window)

7.
M. Cho and Y. M. Han, Riesz idempotent and algebraically M-hyponormal operators, Integral Equations Operator Theory 53 (2005), no. 3, 311-320. crossref(new window)

8.
H. R. Dowsow, Spectral Theory of Linear Operators, Academic Press, London, 1973.

9.
N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217-274. crossref(new window)

10.
J. Eschmeier, Invariant subspaces for subscalar operators, Arch. Math. (Basel) 52 (1989), no. 6, 562-570. crossref(new window)

11.
J. Eschmeier, K. B. Laursen, and M. M. Neumann, Multipliers with natural local spectra on commutative Banach algebras, J. Funct. Anal. 138 (1996), no. 2, 273-294. crossref(new window)

12.
J. Eschmeier and M. Putinar, Spectral Decompositions and Analytic Sheaves, London Mathematical Society Monographs, No. 10, Clarendon Press, Oxford, 1996.

13.
J. K. Han, H. Y. Lee, and W. Y. Lee, Invertible completions of $2{\times}2$ upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (2000), no. 1, 119-123. crossref(new window)

14.
J. S. Han, S. H. Lee, and W. Y. Lee, On M-hyponormal weighted shifts, J. Math. Anal. Appl. 286 (2003), no. 1, 116-124. crossref(new window)

15.
R. E. Harte, Fredholm, Weyl and Browder theory, Proc. Roy. Irish Acad. 85A (1985), 151-176.

16.
R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.

17.
J. C. Hou and X. L. Zhang, On the Weyl spectrum: Spectral mapping theorem and Weyl's theorem, J. Math. Anal. Appl. 220 (1998), no. 2, 760-768. crossref(new window)

18.
K. B. Laursen and M. M. Neumann, Automatic continuity of intertwining linear operators on Banach spaces, Rend. Circ. Mat. Palermo 40 (1991), no. 2, 325-341. crossref(new window)

19.
K. B. Laursen, An Introduction to Local Spectral Theory, London Math. Soc. Monogr. (N.S) 20, Clarendon Press, Oxford, 2000.

20.
W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (2001), no. 1, 131-138. crossref(new window)

21.
S. Mecheri, Bishop's property, SVEP and Dunford property (C), Electron. J. Linear Algra 23 (2012), 523-529.

22.
S. Mecheri, Bishop's property and Riesz idempotent for k-quas-paranormal operators, Banach J. Math. Anal. 6 (2012), no. 1, 147-154. crossref(new window)

23.
S. Mecheri, Isolated points of spectrum of k-quasi--class A operators, Studia Math. 208 (2012), no. 1, 87-96. crossref(new window)

24.
S. Mecheri, On k-quasi-M-hyponormal operators, Math. Inequal. Appl. 16 (2013), no. 3, 895-902.

25.
K. K. Oberai, On the Weyl spectrum, Illinois J. Math. 18 (1974), 208-212.

26.
M. Oudghiri, Weyl's and Browder's theorems for operators satisfying the SVEP, Studia Math. 163 (2004), no. 1, 85-101. crossref(new window)

27.
M. Putinar, Hyponormal operators are subscalar, J. Operator Theory 12 (1984), no. 2, 385-395.

28.
M. Putinar, Hyponormal operators and eigendistribution, Advances in invariant subspaces and other results of operator theory (Timioara and Herculane, 1984), 249-273, Oper. Theory Adv. Appl., 17, Birkhuser, Basel, 1986.

29.
M. Putinar, Quasisimilarity of tuples with Bishop's property ($\beta$), Integral Equations Operator Theory 15 (1992), no. 6, 1047-1052. crossref(new window)