JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MULTIPLICITY RESULTS FOR NONLINEAR SCHRÖDINGER-POISSON SYSTEMS WITH SUBCRITICAL OR CRITICAL GROWTH
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MULTIPLICITY RESULTS FOR NONLINEAR SCHRÖDINGER-POISSON SYSTEMS WITH SUBCRITICAL OR CRITICAL GROWTH
Guo, Shangjiang; Liu, Zhisu;
  PDF(new window)
 Abstract
In this paper, we consider the following -Poisson system: $$\{\begin{array}{lll}-{\Delta}u+u+{\lambda}{\phi}u
 Keywords
-Poisson system;subcritical growth;critical growth;variational methods;
 Language
English
 Cited by
1.
Positive ground state solutions for a class of Schrödinger-Poisson systems with sign-changing and vanishing potential, Mathematical Methods in the Applied Sciences, 2016  crossref(new windwow)
 References
1.
A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrodinger-Poisson problem, Commun. Contemp. Math. 10 (2008), no. 3, 391-404. crossref(new window)

2.
G. Anello, A multiplicity theorem for critical points of functionals on reflexive Banach spaces, Arch. Math. 82 (2004), 172-179. crossref(new window)

3.
J. Azorero and I. Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc. 323 (1991), no. 2, 877-895. crossref(new window)

4.
A. Azzollini, P. d'Avenia, and V. Luisi, Generalized Schrodinger-Poisson type systems, Commun. Pure Appl. Anal. 12 (2013), no. 2, 867-879.

5.
A. Azzollini and A. Pomponio, Ground state solutions for nonlinear Schrodinger-Maxwell equations, J. Math. Anal. Appl. 345 (2008), no. 1, 90-108. crossref(new window)

6.
T. D'Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell-Schroodinger equation, SIAM J. Math. Anal. 37 (2005), 321-342. crossref(new window)

7.
P. D'Avenia, Non-radially symmetric solutions of nonlinear Schrodinger equation coupled with Maxwell equations, Adv. Nonlinear Stud. 2 (2002), no. 2, 177-192.

8.
P. D'Avenia, A. Pomponioa, and G. Vaira, Infinitely many positive solutions for a Schrodinger-Poisson system, Nonlinear Anal. 74 (2011), no. 16, 5705-5721. crossref(new window)

9.
V. Benci and D. Fortunato, An eigenvalue problem for the Schrodinger-Maxwell equations, Topol. Methods Nonlinear Anal. 11 (1998), no. 2, 283-293. crossref(new window)

10.
D. Bleecker, Gauge Theory and Variational Principles, Dover Publications, 2005.

11.
H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986), no. 1, 55-64. crossref(new window)

12.
G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrodinger-Poisson systems, J. Differential Equations 248 (2010), no. 3, 521-543. crossref(new window)

13.
G. Coclite, A multiplicity result for the nonlinear Schrodinger-Maxwell equations, Commun. Appl. Anal. 7 (2003), no. 2-3, 417-423.

14.
L. Evans, Partial Differential Equations, AMS, Providence, RI, 1998.

15.
I. Ianni and G. Vaira, On concentration of positive bound states for the Schrodinger-Poisson problem with potentials, Adv. Nonlinear Stud. 8 (2008), no. 3, 573-595.

16.
M. Kranolseskii, Topological Methods in the Theory of Nonlinear Integral Equations, MacMillan, New York, 1964.

17.
P. Lions, The concentration compactness principle in the calculus of variations: The locally compact case. Parts 1, Ann. Inst. H. Poincare Anal. Non Lineaire 1 (1984), no. 2, 109-145 crossref(new window)

18.
P. Lions, The concentration compactness principle in the calculus of variations: Thelocally compact case. Parts 2, Ann. Inst. H. Poincare Anal. Non Lineaire 1 (1984), no. 4, 223-283. crossref(new window)

19.
Z. Liu and S. Guo, On ground state solutions for the Schrodinger-Poisson equations with critical growth, J. Math. Anal. Appl. 412 (2014), no. 1, 435-448. crossref(new window)

20.
Z. Liu, S. Guo, and Y. Fang, Multiple semiclassical states for coupled Schroinger-Poisson equations with critical exponential growth, J. Math. Phys. 56 (2015), no. 4, 041505, 22 pp.

21.
Z. Liu, S. Guo, and Z. Zhang, Existence and multiplicity of solutions for a class of sublinear Schrodinger-Maxwell equations, Taiwanese J. Math. 17 (2013), no. 3, 857-872. crossref(new window)

22.
L. Pisani and G. Siciliano, Note on a Schrodinger-Poisson system in a bounded domain, Appl. Math. Lett. 21 (2008), no. 5, 521-528. crossref(new window)

23.
P. Pucci and J. Serrin, A Mountain Pass theorem, J. Differential Equations 60 (1985), no. 1, 142-149. crossref(new window)

24.
P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, in: CBMS Reg. Conf. Ser. in Math. vol. 65, Amer. Math. Soc. Providence, RI, 1986.

25.
D. Ruiz, The Schrodinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal. 237 (2006), no. 2, 655-674. crossref(new window)

26.
D. Ruiz and G. Siciliano, A note on the Schrodinger-Poisson-Slater equation on bounded domains, Adv. Nonlinear Stud. 8 (2008), no. 1, 179-190.

27.
A. Salvatore, Homoclinic orbits for a special class of nonautonomous Hamiltonian systems, in: Proceedings of the Second World Congress of Nonlinear Analysis, Part 8 (Athens, 1996), Nonlinear Anal. 30 (1997), no. 8, 4849-4857.

28.
M. Schechter and K. Tintarev, Spherical maxima in Hilbert space and semilinear elliptic eigenvalue problems, Differential Integral Equations 3 (1990), no. 5, 889-899.

29.
G. Siciliano, Multiple positive solutions for a Schrodinger-Poisson-Slater system, J. Math. Anal. Appl. 365 (2010), no. 1, 288-299. crossref(new window)

30.
J. Slater, A simplification of the Hartree-Fock method, Phys. Rev. 81 (1951), 385-390. crossref(new window)

31.
M. Struwe, Variational Methods, Application to Nonlinear Partial Differential Equation and Hamiltonian Syatem, Springer-Verlag, 2007.

32.
J. Sun, Infinitely many solutions for a class of sublinear Schrodinger-Maxwell equations, J. Math. Anal. Appl. 390 (2012), no. 2, 514-522. crossref(new window)

33.
J. Sun, H. Chen, and J. Nieto, On ground state solutions for some non-autonomous Schrodinger-Poisson systems, J. Differential Equations 252 (2012), no. 5, 3365-3380. crossref(new window)

34.
Z. Wang and H. Zhou, Positive solution for a nonlinear stationary Schrodinger-Poisson system in ${\mathbb{R}}^3$, Discrete Contin. Dyn. Syst. 18 (2007), no. 4, 809-816. crossref(new window)

35.
L. Zhao and F. Zhao, On the existence of solutions for the Schroinger-Poisson equations, J. Math. Anal. Appl. 346 (2008), no. 1, 155-169. crossref(new window)