JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON A GENERALIZATION OF HIRZEBRUCH`S THEOREM TO BOTT TOWERS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON A GENERALIZATION OF HIRZEBRUCH`S THEOREM TO BOTT TOWERS
Kim, Jin Hong;
  PDF(new window)
 Abstract
The primary aim of this paper is to generalize a theorem of Hirzebruch for the complex 2-dimensional Bott manifolds, usually called Hirzebruch surfaces, to more general Bott towers of height n. To do so, we first show that all complex vector bundles of rank 2 over a Bott manifold are classified by their total Chern classes. As a consequence, in this paper we show that two Bott manifolds and are isomorphic to each other, as Bott towers if and only if both mod 2 and ${\alpha}_n^2
 Keywords
Bott towers;Bott manifolds;Hirzebruch surfaces;toric varieties;Petrie`s conjecture;strong cohomological rigidity conjecture;
 Language
English
 Cited by
 References
1.
A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458-538. crossref(new window)

2.
R. Bott and H. Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964-1029. crossref(new window)

3.
R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Grad. Texts Math. 82, Springer, 1982.

4.
V. Buchstaber and T. Panov, Torus actions and their applications in topology and combinatorics, University Lecture Series, Vol. 24, Amer. Math. Soc., Providence, Rhode Island, 2002.

5.
S. Choi and M. Masuda, Classification of ${\mathbb{Q}}$-trivial Bott towers, J. Symp. Geom. 10 (2012), no. 3, 447-462.

6.
S. Choi, M. Masuda, and S. Murai, Invariance of Pontrjagin classes for Bott manifolds, Algebr. Geom. Topol. 15 (2015), 965-986. crossref(new window)

7.
Y. Civan and N. Ray, Homotopy decompositions and K-theory of Bott towers, K-theory 34 (2005), no. 1, 1-33. crossref(new window)

8.
M. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds, and torus actions, Duke Math. J. 62 (1991), no. 2, 417-451. crossref(new window)

9.
M. Grossberg and Y. Karshon, Bott towers, complete integrability, and the extended character of representations, Duke Math. J. 76 (1994), no. 1, 23-58. crossref(new window)

10.
F. Hirzebruch, Uber eine Klasse von einfachzusammenhangenden komplexen Mannigfaltigkeiten, Math. Ann. 124 (1951), 77-86. crossref(new window)

11.
H. Ishida, Filtered cohomological rigidity of Bott towers, Osaka J. Math. 49 (2012), no. 2, 515-522.

12.
J.-H. Kim, On a generalized Petrie's conjecture via index theorems, Topology Appl. 160 (2013), no. 12, 1353-1363. crossref(new window)

13.
S. Kuroki and D. Y. Suh, Cohomological non-rigidity of eight-dimensional complex projective towers, Algebr. Geom. Topol. 15 (2015), no. 2, 769-782. crossref(new window)

14.
M. Masuda and T. Panov, Semi-free circle actions, Bott towers, and quasitoric manifolds, Sb. Math. 199 (2008), no. 7-8, 1201-1223. crossref(new window)

15.
M. Masuda and D. Y. Suh, Classification problems of toric manifolds via topology, Toric topology, 273-286, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008. crossref(new window)

16.
J. Morrow and K. Kodaira, Complex manifolds, AMS Chelsea Publishing, Amer. Math. Soc., Providence, Rhode Island, 1971.

17.
T. Petrie, Smooth S1 actions on homotopy complex projective spaces and related topics, Bull. Amer. Math. Soc. 78 (1972), 105-153. crossref(new window)

18.
T. Petrie, Torus actions on homotopy complex projective spaces, Invent. Math. 20 (1973), 139-146. crossref(new window)

19.
F. W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman and Company, Illinois, 1971.