JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ABSTRACT RANDOM LINEAR OPERATORS ON PROBABILISTIC UNITARY SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ABSTRACT RANDOM LINEAR OPERATORS ON PROBABILISTIC UNITARY SPACES
Tran, Xuan Quy; Dang, Hung Thang; Nguyen, Thinh;
  PDF(new window)
 Abstract
In this paper, we are concerned with abstract random linear operators on probabilistic unitary spaces which are a generalization of generalized random linear operators on a Hilbert space defined in [25]. The representation theorem for abstract random bounded linear operators and some results on the adjoint of abstract random linear operators are given.
 Keywords
probabilistic linear space;probabilistic unitary space;probabilistic Hilbert space;abstract random linear operator;abstract random bounded linear operator;abstract random symmetric operator;abstract random self-adjoint operator;abstract random normal operator;
 Language
English
 Cited by
 References
1.
A. A. Dorogovstev, On application of a Gaussian random operator to random elements, Theory Probab. Appl. 30 (1986), no. 4, 812-814.

2.
H. W. Engl, M. Z. Nashed, and M. Zuhair, Generalized inverses of random linear operators in Banach spaces, J. Math. Anal. Appl. 83 (1981), no. 2, 582-610. crossref(new window)

3.
H. W. Engl and W. Romisch, Approximate solutions of nonlinear random operator equations: Convergence in distribution, Pacific J. Math. 120 (1985), no. 1, 55-77. crossref(new window)

4.
T. Guo, Module homomorphisms on random normed modules, Northeast. Math. J. 12 (1996), no. 1, 102-114.

5.
T. Guo, Relations between some basic results derived from two kinds of topologies for a random locally convex module, J. Funct. Anal. 258 (2010), no. 9, 3024-3047. crossref(new window)

6.
T. Guo and G. Shi, The algebraic structure of finitely generated $L^0$(${\cal{F}}$, K)-modules and the Helly theorem in random normed modules, J. Math. Anal. Appl. 381 (2011), no. 2, 833-842. crossref(new window)

7.
T. Guo and Y. Yang, Ekelands variational principle for an $L^-0$-valued function on a complete random metric space, J. Math. Anal. Appl. 389 (2012), no. 1, 1-14. crossref(new window)

8.
Wu. Mingzhu, The Bishop-Phelps theorem in complete random normed modules endows with the (${\varepsilon},{\lambda}$)-topology, J. Math. Anal. Appl. 391 (2012), 648-652. crossref(new window)

9.
M. Z. Nashed and H. W. Engl, Random generalized inverses and approximate solution of random equations, In: A. T. Bharucha-Reid (Ed.) Approximate Solution of random equations, pp. 149-210, Elsevier /North-Holland, New York-Amsterdam, 1979.

10.
H. Olga and P. Endre, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, 2001.

11.
B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier, New York, 1983.

12.
N. Shahzad, Random fixed points of K-set and pseudo-contractive random maps, Nonlinear Anal. 57 (2004), no. 2, 173-181. crossref(new window)

13.
N. Shahzad, Random fixed point results for continuous pseudo-contractive random maps, Indian J. Math. 50 (2008), no. 2, 331-337.

14.
N. Shahzad and N. Hussain, Deterministic and random coincidence point results for f-nonexpansive maps, J. Math. Anal. Appl. 323 (2006), no. 2, 1038-1046. crossref(new window)

15.
A. V. Skorokhod, Random Linear Operators, Reidel Publishing Company, Dordrecht, 1984.

16.
D. H. Thang, Random Operator in Banach spaces, Probab. Math. Statist. 8 (1987), 155-157.

17.
D. H. Thang, The adjoint and the composition of random operators on a Hilbert space, Stoch. Stoch. Rep. 54 (1995), no. 1-2, 53-73. crossref(new window)

18.
D. H. Thang, Random mappings on infinite dimensional spaces, Stoch. Stoch. Rep. 64 (1998), no. 1-2, 51-73. crossref(new window)

19.
D. H. Thang, Series and spectral representations of random stable mappings, Stoch. Stoch. Rep. 64 (1998), no. 1-2, 33-49. crossref(new window)

20.
D. H. Thang, Transforming random operators into random bounded operators, Random Oper. Stoch. Equ. 16 (2008), no. 3, 293-302.

21.
D. H. Thang and P. T. Anh, Random fixed points of completely random operators, Random Oper. Stoch. Equ. 21 (2013), no. 1, 1-20. crossref(new window)

22.
D. H. Thang and T. N. Anh, On random equations and applications to random fixed point theorems, Random Oper. Stoch. Equ. 18 (2010), no. 3, 199-212.

23.
D. H. Thang and T. M. Cuong, Some procedures for extending random operators, Random Oper. Stoch. Equ. 17 (2009), no. 4, 359-380.

24.
D. H. Thang and Ng. Thinh, Random bounded operators and their extension, Kyushu J. Math. 58 (2004), no. 2, 257-276. crossref(new window)

25.
D. H. Thang and Ng. Thinh, Generalized random linear operators on a Hilbert space, Stochastics 85 (2013), no. 6, 1040-1059.

26.
D. H. Thang, Ng. Thinh, and Tr. X. Quy, Generalized random spectral measures, J. Theoret. Probab. 27 (2014), no. 2, 576-600. crossref(new window)