JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON JACOBSON AND NIL RADICALS RELATED TO POLYNOMIAL RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON JACOBSON AND NIL RADICALS RELATED TO POLYNOMIAL RINGS
Kwak, Tai Keun; Lee, Yang; Ozcan, A. Cigdem;
  PDF(new window)
 Abstract
This note is concerned with examining nilradicals and Jacobson radicals of polynomial rings when related factor rings are Armendariz. Especially we elaborate upon a well-known structural property of Armendariz rings, bringing into focus the Armendariz property of factor rings by Jacobson radicals. We show that J(R[x])
 Keywords
feckly Armendariz ring;Jacobson radical;nilradical;polynomial ring;Armendariz ring;
 Language
English
 Cited by
 References
1.
S. A. Amitsur, A general theory of radicals III, Amer. J. Math. 76 (1954), 126-136. crossref(new window)

2.
S. A. Amitsur, Radicals of polynomial rings, Canad. J. Math. 8 (1956), 355-361. crossref(new window)

3.
D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. crossref(new window)

4.
R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. crossref(new window)

5.
R. Antoine, Examples of Armendariz rings, Comm. Algebra 38 (2010), no. 11, 4130-4143. crossref(new window)

6.
E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Aust. Math. Soc. 18 (1974), 470-473. crossref(new window)

7.
V. Camillo, C. Y. Hong, N. K. Kim, Y. Lee, and P. P. Nielsen, Nilpotent ideals in polynomial and power series rings, Proc. Amer. Math. Soc. 138 (2010), no. 5, 1607-1619. crossref(new window)

8.
J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), no. 2, 85-88. crossref(new window)

9.
K. E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 73 (1966), 512-514.

10.
K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.

11.
K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, Cambridge-New York-Port Chester-Melbourne-Sydney, 1989.

12.
J. C. Han, H. K. Kim, and Y. Lee, Armendariz property over prime radicals, J. Korean Math. Soc. 50 (2013), no. 5, 973-989. crossref(new window)

13.
J. C. Han and W. K. Nicholson, Extensions of clean rings, Comm. Algebra 29 (2001), no. 6, 2589-2595. crossref(new window)

14.
Y. Hirano, D. V. Huynh, and J. K. Park, On rings whose prime radical contains all nilpotent elements of index two, Arch. Math. 66 (1996), no. 5, 360-365. crossref(new window)

15.
S. U. Hwang, Y. C. Jeon, and Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), no. 1, 186-199. crossref(new window)

16.
Y. C. Jeon, H. K. Kim, Y. Lee, and J. S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), no. 1, 135-146. crossref(new window)

17.
D. W. Jung, N. K. Kim, Y. Lee, and S. P. Yang, Nil-Armendariz rings and upper nilradicals, Internat. J. Algebra Comput. 22 (2012), no. 6, 1250059, 13 pp.

18.
N. K. Kim, K. H. Lee, and Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34 (2006), no. 6, 2205-2218. crossref(new window)

19.
N. K. Kim and Y. Lee, On right quasi-duo rings which are ${\pi}$-regular, Bull. Korean Math. Soc. 37 (2000), no. 2, 217-227.

20.
N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488. crossref(new window)

21.
J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.

22.
C. Lanski, Nil subrings of Goldie rings are nilpotent, Canad. J. Math. 21 (1969), 904-907. crossref(new window)

23.
T.-K. Lee and T.-L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), no. 3, 583-593.

24.
C. Levitzki, A theorem on polynomial identities, Proc. Amer. Math. Soc. 1 (1950), 331-333. crossref(new window)

25.
A. R. Nasr-Isfahani and A. Moussavi, A generalization of reduced rings, J. Algebra Appl. 11 (2012), no. 4, 1250070, 30 pp.

26.
W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278. crossref(new window)

27.
M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. crossref(new window)

28.
A. Smoktunowicz, Polynomial rings over nil rings need not be nil, J. Algebra 233 (2000), no. 2, 427-436. crossref(new window)

29.
J. Stock, On rings whose projective modules have the exchange property, J. Algebra 103 (1986), no. 2, 437-453. crossref(new window)

30.
B. Ungor, O. Gurgun, S. Halicioglu, and A. Harmanci, Feckly reduced rings, Hacettepe J. Math. Stat. 44 (2015), 375-384.

31.
R. B. Warfield, Exchange rings and decompositions of modules, Math. Ann. 199 (1972), 31-36. crossref(new window)