JOURNAL BROWSE
Search
Advanced SearchSearch Tips
OMORI-YAU MAXIMUM PRINCIPLE ON ALEXANDROV SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
OMORI-YAU MAXIMUM PRINCIPLE ON ALEXANDROV SPACES
Lee, Hanjin;
  PDF(new window)
 Abstract
We prove an Omori-Yau maximum principle on Alexandrov spaces which do not have Perelman singular points and satisfy the infinitesimal Bishop-Gromov condition.
 Keywords
Omori-Yau maximum principle;Alexandrov space;Bishop-Gromov condition;
 Language
English
 Cited by
 References
1.
L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York, 2000.

2.
L. Ambrosio and B. Kirchheim, Rectifiable sets in metric and Banach spaces, Math. Ann. 318 (2000), no. 3, 527-555. crossref(new window)

3.
D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, vol.33, American Mathematical Society, Providence, RI, 2001.

4.
Y. Burago, M. Gromov, and G. Perelman, A. D. Aleksandrov spaces with curvature bounded below, Russian Math. Surveys 47 (1992), no. 2, 1-58.

5.
K. Kuwae, Y. Machigahira, and T. Shioya, Sobolev sapces, Laplacian, and heat kernel on Alexandrov spaces, Math. Z. 238 (2001), no. 2, 269-316. crossref(new window)

6.
K. Kuwae and T. Shioya, Laplacian comparison for Alexandrov spaces, arXiv:0709.0788, 2007.

7.
K. Kuwae and T. Shioya, Infinitesimal Bishop-Gromov condition for Alexandrov spaces, Probabilistic approach to geometry, 293-302, Adv. Stud. Pure Math., 57, Math. Soc. Japan, Tokyo, 2010.

8.
K. Kuwae and T. Shioya, A topological splitting theorem for weighted Alexandrov spaces, Tohoku Math. J. (2) 63 (2011), no. 1, 59-76.

9.
S. Ohta, On the measure contraction property of metric measure spaces, Comment. Math. Helv. 82 (2007), no. 4, 805-828.

10.
H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205-214. crossref(new window)

11.
Y. Otsu and T. Shioya, The Riemannian structure of Alexandrov spaces, J. Differential Geom. 39 (1994), no. 3, 629-658.

12.
G. Perelman, DC-structure on Alexandrov spaces, preprint.

13.
A. Petrunin, Alexandrov meets Lott-Villani-Sturm, Munster J. Math. 4 (2011), 53-64.

14.
S. Pigola, M. Rigoli, and A. G. Setti, A remark on the maximum principle and stochastic completeness, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1283-1288. crossref(new window)

15.
J. Rataj and L. Zajicek, Critical values and level sets of distance functions in Riemannian, Alexandrov and Minkowski spaces, Houston J. Math. 38 (2012), no. 2, 445-467.

16.
A. Ratto, M. Rigoli, and A. G. Setti, On the Omori-Yau maximum principle and its application to differential equations and geometry, J. Funct. Anal. 134 (1995), no. 2, 486-510. crossref(new window)

17.
M.-K. von Renesse, Heat kernel comparison on Alexandrov spaces with curvature bounded below, Potential Anal. 21 (2004), no. 2, 151-176. crossref(new window)

18.
S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228. crossref(new window)

19.
S. T. Yau, A general Schwarz lemma for Kahler manifolds, Amer. J. Math. 100 (1978), no. 1, 197-203. crossref(new window)

20.
H. Zhang and X. Zhu, Ricci curvature on Alexandrov spaces and rigidity theorems, Comm. Anal. Geom. 18 (2010), no. 3, 503-553. crossref(new window)