JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON 𝜙-n-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON 𝜙-n-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS
Mostafanasab, Hojjat; Darani, Ahmad Yousefian;
  PDF(new window)
 Abstract
All rings are commutative with and n is a positive integer. Let be a function where denotes the set of all ideals of R. We say that a proper ideal I of R is -n-absorbing primary if whenever and , either or the product of with (n-1) of is in . The aim of this paper is to investigate the concept of -n-absorbing primary ideals.
 Keywords
n-absorbing ideals;n-absorbing primary ideals;-n-absorbing primary ideals;
 Language
English
 Cited by
 References
1.
D. D. Anderson and M. Batanieh, Generalizations of prime ideals, Comm. Algebra 36 (2008), no. 2, 686-696. crossref(new window)

2.
D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), no. 4, 831-840.

3.
D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), no. 5, 1646-1672. crossref(new window)

4.
A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 417-429. crossref(new window)

5.
A. Badawi and E. Houston, Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conducive domains, Comm. Algebra 30 (2002), no. 4, 1591-1606. crossref(new window)

6.
A. Badawi, U. Tekir, and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc. 51 (2014), no. 4, 1163-1173. crossref(new window)

7.
A. Badawi, U. Tekir, and E. Yetkin, On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc. 52 (2015), no. 1, 97-111. crossref(new window)

8.
A. Badawi and A. Yousefian Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math. 39 (2013), no. 2, 441-452.

9.
S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes. Comm. Algebra 33 (2005), no. 1, 43-49. crossref(new window)

10.
S. Ebrahimi Atani and F. Farzalipour, On weakly primary ideals, Georgian Math. J. 12 (2005), no. 3, 423-429.

11.
M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Comm. Algebra 40 (2012), no. 4, 1268-1279. crossref(new window)

12.
D. J. Fieldhouse, Purity and Flatness, McGill University, Montreal, Canada, 1967.

13.
R. Gilmer, Multiplicative ideal theory, Queens Papers Pure Appl. Math. 90, Queens University, Kingston, 1992.

14.
J. Hukaba, Commutative rings with zero divisors, Marcel Dekker, Inc., New York, 1988.

15.
H. Mostafanasab, F. Soheilnia, and A. Yousefian Darani, On weakly n-absorbing ideals of commutative rings, submitted.

16.
H. Mostafanasab, E. Yetkin, U. Tekir, and A. Yousefian Darani, On 2-absorbing primary submodules of modules over commutative rings, An. St. Univ. Ovidius Constanta, (in press).

17.
H. Mostafanasab and A. Yousefian Darani, 2-irreducible and strongly 2-irreducible ideals of commutative rings, Miskolc Math. Notes, (in press).

18.
P. Nasehpour, On the Anderson-Badawi ${\omega}_{R[X]}$(I[X]) = ${\omega}_R$(I) conjecture, arXiv:1401.0459, (2014).

19.
D. G. Northcott, A generalization of a theorem on the content of polynomials, Proc. Cambridge Phil. Soc. 55 (1959), 282-288. crossref(new window)

20.
J. Ohm and D. E. Rush, Content modules and algebras, Math. Scand. 31 (1972), 49-68.

21.
P. A. J. Pena and J. E. Vielma, Isolated points and redundancy, Comment. Math. Univ. Carolin. 52 (2011), no. 1, 145-152.

22.
P. Quartararo and H. S. Butts, Finite unions of ideals and modules, Proc. Amer. Math. Soc. 52 (1975), 91-96. crossref(new window)

23.
D. E. Rush, Content algebras, Canad. Math. Bull. 21 (1978), no. 3, 329-334. crossref(new window)

24.
R. Y. Sharp, Steps in Commutative Algebra, Second edition, Cambridge University Press, Cambridge, 2000.

25.
A. Yousefian Darani, Generalizations of primary ideals in commutative rings, Novi Sad J. Math. 42 (2012), no. 1, 27-35.