JOURNAL BROWSE
Search
Advanced SearchSearch Tips
L2 HARMONIC 1-FORMS ON SUBMANIFOLDS WITH WEIGHTED POINCARÉ INEQUALITY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
L2 HARMONIC 1-FORMS ON SUBMANIFOLDS WITH WEIGHTED POINCARÉ INEQUALITY
Chao, Xiaoli; Lv, Yusha;
  PDF(new window)
 Abstract
In the present note, we deal with harmonic 1-forms on complete submanifolds with weighted inequality. By supposing submanifold is stable or has sufficiently small total curvature, we establish two vanishing theorems for harmonic 1-forms, which are some extension of the results of Kim and Yun, Sang and Thanh, Cavalcante Mirandola and .
 Keywords
weighted inequality;stable hypersurface;property (); harmonic 1-form;
 Language
English
 Cited by
 References
1.
D. M. Calderbank, P. Gauduchon, and M. Herzlich, Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal. 173 (2000), no. 1, 214-255. crossref(new window)

2.
G. Carron, $L^2$-Cohomologie et inegalites de Sobolev, Math. Ann. 314 (1999), no. 4, 613-639. crossref(new window)

3.
M. P. Cavalcante, H. Mirandola, and F. Vitorio, $L^2$ harmonic 1-form on submanifolds with finite total curvature, J. Geom. Anal. 24 (2014), no. 1, 205-222. crossref(new window)

4.
X. Cheng, $L^2$ harmonic forms and stability of hypersurfaces with constant mean curvature, Bol. Soc. Brasil. Mat. (N.S.) 31 (2000), no. 2, 225-239. crossref(new window)

5.
N. T. Dung and K. Seo, Stable minimal hypersurfaces in a Riemannian manifold with pinched negative sectional curvature, Ann. Global Anal. Geom. 41 (2012), no. 4, 447-460. crossref(new window)

6.
N. T. Dung and K. Seo, Vanishing theorems for $L^2$ harmonic 1-forms on complete submanifolds in a Riemannian manifold, J. Math. Anal. Appl. 423 (2015), no. 2, 1594-1609. crossref(new window)

7.
N. T. Dung and C. J. Sung, Manifolds with a weighted Poincare inequality, Proc. Amer. Math. Soc. 142 (2014), no. 5, 1783-1794. crossref(new window)

8.
H. P. Fu and Z. Q. Li, $L^2$ harmonic 1-forms on complete submanifolds in Euclidean space, Kodai Math. J. 32 (2009), no. 3, 432-441. crossref(new window)

9.
D. Hoffman and J. Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm. Pure Appl. Math. 27 (1974), 715-727.

10.
J. J. Kim and G. Yun, On the structure of complete hypersurfaces in a Riemannian manifold of nonnegative curvature and $L^2$ harmonic forms, Arch. Math. (Basel) 100 (2013), no. 4, 369-380. crossref(new window)

11.
K. H. Lam, Results on a weighted Poincare inequality of complete manifolds, Trans. Amer. Math. Soc. 362 (2010), no. 10, 5043-5062. crossref(new window)

12.
P. F. Leung, An estimate on the Ricci curvature of a submanifold and some applications, Proc. Amer. Math. Soc. 114 (1992), no. 4, 1051-1061. crossref(new window)

13.
P. Li, Geometric Analysis, Cambridge Studies in Advanced Mathematics, 134. Cambridge University Press, Cambridge, 2012.

14.
P. Li and J. Wang, Complete manifolds with positive spectrum, J. Differential Geom. 58 (2001), no. 3, 501-534.

15.
V. Matheus, Vanishing theorems for $L^2$ harmonic forms on complete Riemannian manifolds, arXiv: 1407.0236v1.

16.
R. Miyaoka, $L^2$ harmonic 1-forms on a complete stable minimal hypersurface, Geometry and global analysis (Sendai, 1993), 289-293, Tohoku Univ., Sendai, 1993.

17.
B. Palmer, Stability of minimal hypersurfaces, Comment. Math. Helv. 66 (1991), no. 2, 185-188. crossref(new window)

18.
N. N. Sang and N. T. Thanh, Stability minimal hypersurfaces with weighted Poincare inequality in a Riemannian manifold, Commun. Korean. Math. Soc. 29 (2014), no. 1, 123-130. crossref(new window)

19.
K. Seo, Rigidity of minimal submanifolds in hyperbolic space, Arch. Math. (Basel) 94 (2010), no. 2, 173-181. crossref(new window)

20.
K. Seo, $L^2$ harmonic 1-forms on minimal submanifolds in hyperbolic space, J. Math. Anal. Appl. 371 (2010), no. 2, 546-551. crossref(new window)

21.
K. Shiohama and H. Xu, The topological sphere theorem for complete submanifolds, Compos. Math. 107 (1997), no. 2, 221-232. crossref(new window)

22.
S. Tanno, $L^2$ harmonic forms and stability of minimal hypersurfaces, J. Math. Soc. Japan. 48 (1996), no. 4, 761-768. crossref(new window)

23.
S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659-670. crossref(new window)

24.
G. Yun, Total scalar curvature and $L^2$ harmonic 1-forms on a minimal hypersurface in Euclidean space, Geom. Dedicata. 89 (2002), 135-141.