JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EXTENDING HYPERELLIPTIC K3 SURFACES, AND GODEAUX SURFACES WITH π1
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EXTENDING HYPERELLIPTIC K3 SURFACES, AND GODEAUX SURFACES WITH π1
Coughlan, Stephen;
  PDF(new window)
 Abstract
We construct the extension of a hyperelliptic K3 surface to a Fano 6-fold with extraordinary properties in moduli. This leads us to a family of surfaces of general type with $p_g
 Keywords
surfaces of general type;Godeaux surfaces;Fano 6-folds;
 Language
English
 Cited by
 References
1.
R. Barlow, Some new surfaces with $p_g=0$, Duke Math. J. 51 (1984), no. 4, 889-904. crossref(new window)

2.
R. Barlow, A simply connected surface of general type with $p_g=0$, Invent. Math. 79 (1985), no. 2, 293-301. crossref(new window)

3.
F. Catanese and O. Debarre, Surfaces with $K^2=2$, $p_g=1$, q = 0, J. Reine. Angew. Math. 395 (1989), 1-55.

4.
S. Coughlan, Key varieties for surfaces of general type, University of Warwick PhD thesis, 2009.

5.
S. Coughlan, Extending symmetric determinantal quartic surfaces, Geom. Dedicata 172 (2014), 155-177. crossref(new window)

6.
Y. Lee and J. Park, A simply connected surface of general type with $p_g=0$ and $K^2=2$, Invent. Math. 170 (2007), no. 3, 483-505. crossref(new window)

7.
S. Papadakis and M. Reid, Kustin-Miller unprojection with complexes, J. Algebraic Geom. 13 (2004), no. 2, 249-268. crossref(new window)

8.
M. Reid, Surfaces with pg = 0, $K^2=1$, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 25 (1978), no. 1, 75-92.

9.
M. Reid, Infinitesimal view of extending a hyperplane section-deformation theory and computer algebra, Algebraic geometry (L'Aquila, 1988), 214-286, Lecture Notes in Math., 1417, Springer, Berlin, 1990.

10.
M. Reid, Graded rings and birational geometry, Proc. of algebraic geometry symposium, 1-72, (Kinosaki, Oct 2000), K. Ohno (Ed.), 2000.

11.
B. Saint-Donat, Projective models of K3 surfaces, Amer. J. Math. 96 (1974), 602-639. crossref(new window)

12.
C. Werner, A four-dimensional deformation of a numerical Godeaux surface, Trans. Amer. Math. Soc. 349 (1997), no. 4, 1515-1525. crossref(new window)