JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FINITE TYPE OF THE PEDAL OF REVOLUTION SURFACES IN E3
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FINITE TYPE OF THE PEDAL OF REVOLUTION SURFACES IN E3
Abdelatif, Mohamed; Alldeen, Hamdy Nour; Saoud, Hassan; Suorya, Saleh;
  PDF(new window)
 Abstract
Chen and Ishikawa studied the surfaces of revolution of the polynomial and the rational kind of finite type in Euclidean 3-space [10]. Here, the pedal of revolution surfaces of the polynomial and the rational kind are discussed. Also, as a special case of general revolution surfaces, the sphere and catenoid are studied for the kind of finite type.
 Keywords
pedal surfaces;revolution surfaces;finite type;
 Language
English
 Cited by
 References
1.
C. Baikoussis, Ruled submanifolds with finite type Gauss map, J. Geom. 49 (1994), no. 1-2, 42-45. crossref(new window)

2.
C. Baikoussis, F. Defever, P. Embrechts, and L. Verstraelen, On the Gauss map of the cyclides of dupin, Soochow J. Math. 19 (1993), no. 4, 417-428.

3.
C. Baikoussis and L. Verstraelen, The chen-type of the spiral surfaces, Results Math. 28 (1995), no. 3-4, 214-223. crossref(new window)

4.
B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, 1984.

5.
B. Y. Chen, Finite type submanifolds and generalizations, Universita degli Studi di Roma "La Sapienza", Dipartimento di Matematica. IV, 68, 1985.

6.
B. Y. Chen, Surfaces of finite type in Euclidean 3−space, Bull. Soc. Math. Belg. Ser. B 39 (1987), no. 2, 243-254.

7.
B. Y. Chen, A report on submanifolds of finite type, J. Math. Soc. 22 (1996), no. 2, 117-337.

8.
B. Y. Chen, Some open problems and conjectures on submanifolds of finite type: recent development, Tamkang J. Math. 45 (2014), no. 1, 87-108. crossref(new window)

9.
B. Y. Chen, M. Choi, and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc. 42 (2005), no. 3, 447-455. crossref(new window)

10.
B. Y. Chen and S. Ishikawa, On Classification of some surfaces of revolution of finite type, Tsukuba J. Math. 17 (1993), no. 1, 287-298.

11.
B. Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35 (1987), no. 2, 161-186. crossref(new window)

12.
A. Ferrandez and P. Lucas, Finite type surfaces of revolution, Rivista di Math. Pura ed Applicatan 12 (1992), 75-87.

13.
Chr. Georgiou, Th. Hasanis, and D. Koutrofiotis, The pedal of a hypersurface, Technical Report (1983), no. 96.

14.
Chr. Georgiou, Th. Hasanis, and D. Koutrofiotis, On the caustic of convex mirror, Geometriae Dedicata 28 (1988), 153-158.

15.
S. A. Hassan, Higher order Gaussian curvature of pedal hypersurfaces, J. Institute of Math. & Computer Sciences 16 , 2003.

16.
V. Hlavaty, Differentielle Linien Geometrie, P. Nortdhoff, Groningen, 1945.

17.
J. Hoschek, Integral invarianten von regel flachhen, Arch. Math. XXIV (1973), 218-224.

18.
E. Kasap, A. Saraoglugil, and N. Kuruoglu, The pedal cone surface of a developable ruled surface, Intern. J. Pure Appl. Math. 19 (2005), no. 2, 157-164.

19.
N. Kuruoglu, Some new characteristic of the pedal surfaces in Euclidean space $E^3$, Pure Appl. Math. Sci. 23 (1996), no. 1-2, 7-11.

20.
N. Kuruoglu and A. Sarioglugil, On the characteristic properties of the hyperpedal sur-faces in (n + 1)-dimensional Euclidean space $E^{n+1}$, Pure Appl. Math. Sci. IV (2002), no. 1-2, 15-21.

21.
G. Salmon, Analytic Geometry, Accademic Press., New York, 1966.

22.
M. A. Soliman, H. N. Abd-Ellah, S. A. Hassan, and S. Q. Saleh, Frenet surfaces with pointwise 1-type Gauss map, Wulfenla. J., Klagenfurt Austria 22 (2015), no. 1, 169-181.

23.
M. A. Soliman, S. A. Hassan, and E. Y. Abd ElMonem, Examples of surfaces gained by variation of pedal surfaces in $E^{n+1}$, J. Egyptian Math. Soc. 18 (2010), no. 1, 91-105.

24.
T. Tahakashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385. crossref(new window)

25.
D. W. Yoon, Rotation surfaces with finite type Gauss map in $E^4$, Indian J. Pure Appl. Math. 32 (2001), no. 12, 1803-1808.