JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ASYMPTOTIC BEHAVIORS OF FUNDAMENTAL SOLUTION AND ITS DERIVATIVES TO FRACTIONAL DIFFUSION-WAVE EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ASYMPTOTIC BEHAVIORS OF FUNDAMENTAL SOLUTION AND ITS DERIVATIVES TO FRACTIONAL DIFFUSION-WAVE EQUATIONS
Kim, Kyeong-Hun; Lim, Sungbin;
  PDF(new window)
 Abstract
Let p(t, x) be the fundamental solution to the problem $${\partial}^{\alpha}_tu
 Keywords
fractional diusion;Levy process;asymptotic behavior;fundamental solution;space-time fractional dierential equation;
 Language
English
 Cited by
 References
1.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with formulas, graphs, and mathematical tables, Number 55, Courier Dover Publications, 1972.

2.
G. E. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999.

3.
V. V. Anh and N. N. Leonenko, Spectral analysis of fractional kinetic equations with random data, J. Statist. Phys. 104 (2001), no. 5-6, 1349-1387. crossref(new window)

4.
B. L. J. Braaksma, Asymptotic expansions and analytic continuations for a class of barnes-integrals, Compositio Math. 15 (1964), 239-341.

5.
Z.-Q. Chen, K.-H. Kim, and P. Kim, Fractional time stochastic partial differential equations, Stochastic Process. Appl. 125 (2015), no. 4, 1470-1499. crossref(new window)

6.
Z.-Q. Chen, M. M. Meerschaert, and E. Nane, Space-time fractional diffusion on bounded domains, J. Math. Anal. Appl. 393 (2012), no. 2, 479-488. crossref(new window)

7.
P. Clement, G. Gripenberg, and S.-O. Londen, Schauder estimates for equations with fractional derivatives, Trans. Amer. Math. Soc. 352 (2000), no. 5, 2239-2260. crossref(new window)

8.
P. Clement, S.-O. Londen, and G. Simonett, Quasilinear evolutionary equations and continuous interpolation spaces, J. Differential Equations 196 (2004), no 2, 418-447. crossref(new window)

9.
S. D. Eidelman, S. D. Ivasyshen, and A. N. Kochubei, Analytic methods in the theory of differential and pseudo-differential equations of parabolic type, Operator Theory: Advances and Applications, 152. Birkhauser Verlag, Basel, 2004.

10.
S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations 199 (2004), no. 2, 211-255. crossref(new window)

11.
R. Goreno, A. Iskenderov, and Y. Luchko, Mapping between solutions of fractional diffusion-wave equations, Fract. Calc. Appl. Anal. 3 (2000), no. 1, 75-86.

12.
A. Hanyga, Multidimensional solutions of space-time-fractional diffusion equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458 (2002), no. 2020, 933-957. crossref(new window)

13.
S. Jo and M. Yang, Precise asymptotic approximations for kernels corresponding to Levy processes, Potential Anal. 40 (2014), no. 3, 203-230. crossref(new window)

14.
A. A. Kilbas, H-transforms: Theory and Applications, CRC Press, 2004.

15.
I. Kim and K.-H. Kim, A generalization of the Littlewood-Paley inequality for the fractional Laplacian $(-{\Delta})^{{\alpha}/2}$, J. Math. Anal. Appl. 388 (2012), no. 1, 175-190. crossref(new window)

16.
I. Kim, K.-H. Kim, and P. Kim, Parabolic Littlewood-Paley inequality for ${\phi}(-{\Delta})$-type operators and applications to stochastic integro-differential equations, Adv. Math. 249 (2013), 161-203. crossref(new window)

17.
I. Kim, K.-H. Kim, and S. Lim, An $L_q(L_p)$-theory for the time fractional evolution equations with variable coecients, arXiv preprint arXiv:1505.00504, 2015.

18.
I. Kim, K.-H. Kim, and S. Lim, An $L_q(L_p)$-theory for parabolic pseudo-differential equations, Calderon-Zygmund approach, arXiv preprint arXiv:1503.04521, 2015.

19.
I. Kim, K.-H. Kim, and S. Lim, Parabolic BMO estimates for pseudo-differential operators of arbitrary order, J. Math. Anal. Appl. 427 (2015), no. 2, 557-580. crossref(new window)

20.
A. N. Kochubei, Asymptotic properties of solutions of the fractional diffusion-wave equation, Fract. Calc. Appl. Anal. 17 (2014), no. 3, 881-896.

21.
N. V. Krylov, On the foundation of the $L_p)$-theory of stochastic partial differential equations, Stochastic Partial Differential Equations and Applications-VII, page 179-191, 2006.

22.
Z. Li, Y. Luchko, and M. Yamamoto, Asymptotic estimates of solutions to initial- boundary-value problems for distributed order time-fractional diffusion equations, Fract. Calc. Appl. Anal. 17 (2014), no. 4, 1114-1136.

23.
M. Magdziarz and R. Schilling, Asymptotic properties of Brownian motion delayed by inverse subordinators, Proc. Amer. Math. Soc. 143 (2015), no. 10, 4485-4501. crossref(new window)

24.
F. Mainardi, Fractional diffusive waves in viscoelastic solids, Nonlinear Waves in Solids, pages 93-97, Fairfield, 1995.

25.
M. M. Meerschaert, R. L. Schilling, and A. Sikorskii, Stochastic solutions for fractional wave equations, Nonlinear Dynam. 80 (2015), no. 4, 1685-1695. crossref(new window)

26.
R. Metzler, E. Barkai, and J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: a fractional fokker-planck equation approach, Phys. Rev. Lett. 82 (1999), no. 18, 3563. crossref(new window)

27.
R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A 278 (2000), no. 1-2, 107-125. crossref(new window)

28.
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 1-77. crossref(new window)

29.
R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A 37 (2004), no. 31, 161-208. crossref(new window)

30.
I. Podlubny, Fractional Differential Equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, volume 198, Academic press, 1998.

31.
A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and Series: Special Functions, volume 2, CRC Press, 1998.

32.
K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl. 382 (2011), no. 1, 426-447. crossref(new window)

33.
S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach, New York, 1993.

34.
W. Schneider and W. Wyss, Fractional diffusion and wave equations, J. Math. Phys. 30 (1989), no. 1, 134-144. crossref(new window)

35.
E. M. Stein and G. L. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, volume 1, Princeton university press, 1971.

36.
J. van Neerven, M. Veraar, L. Weis, et al., Stochastic maximal lp-regularity, The Annals of Probability 40 (2012), no. 2, 788-812. crossref(new window)

37.
R. Zacher, Maximal regularity of type $L_p$ for abstract parabolic Volterra equations, J. Evol. Equ. 5 (2005), no. 1, 79-103. crossref(new window)