JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GALOIS CORRESPONDENCES FOR SUBFACTORS RELATED TO NORMAL SUBGROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GALOIS CORRESPONDENCES FOR SUBFACTORS RELATED TO NORMAL SUBGROUPS
Lee, Jung-Rye;
  PDF(new window)
 Abstract
For an outer action of a finite group G on a factor M, it was proved that H is a, normal subgroup of G if and only if there exists a finite group F and an outer action of F on the crossed product algebra M G = (M F. We generalize this to infinite group actions. For an outer action of a discrete group, we obtain a Galois correspondence for crossed product algebras related to normal subgroups. When satisfies a certain condition, we also obtain a Galois correspondence for fixed point algebras. Furthermore, for a minimal action of a compact group G and a closed normal subgroup H, we prove = ( )for a minimal action of G/H on .f G/H on .TEX> H/.
 Keywords
Galois correspondence;crossed product algebra;fixed point algebra;cocycle crossed action;regular extension;
 Language
English
 Cited by
 References
1.
Math.Japon., 1979. vol.24. pp.45-51

2.
Proc.amer.Math.Soc., 1992. vol.115. pp.415-417 crossref(new window)

3.
Math.Japon., 1977. vol.22. pp.383-394

4.
J.Funct.Anal., 1998. vol.155. pp.25-63 crossref(new window)

5.
Invent.Math., 1983. vol.72. pp.1-25 crossref(new window)

6.
Pacific J.Math., 1997. vol.177. pp.269-290 crossref(new window)

7.
Proc.Japan Acad., 1960. vol.36. pp.258-260 crossref(new window)

8.
Publ.RIMS, Kyoto Univ., 1980. vol.16. pp.135-174 crossref(new window)

9.
Proc.Amer.Math.Soc., 1994. vol.120. pp.781-783 crossref(new window)