JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COUNTABLY APPROXIMATING FRAMES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COUNTABLY APPROXIMATING FRAMES
Lee, Seung-On;
  PDF(new window)
 Abstract
Using the Countably way below relation, we show that the category -CFrm of -coherent frames and -coherent homomorphisms is coreflective n the category Frm of frames and frame homomorphisms. Introducting the concept of stably countably approximating frames which are exactly retracts of -coherent frames, it is shown that the category SCAFrm of stably countably approximating frames and -proper frame homomorphisms is coreflective in Frm. Finally we introduce strongly Lindelof frames and show that they are precisely lax retracts of -coherent frames.
 Keywords
frames;countably approximating frames;-frames;-coherent frames;stably countably approximating frames;
 Language
English
 Cited by
1.
드 모르간 틀,이승온;

한국수학사학회지, 2004. vol.17. 2, pp.73-84
2.
Stably 가산 근사 Frames와 Strongly Lindelof Frames,이승온;

한국수학사학회지, 2003. vol.16. 1, pp.63-72
 References
1.
Lect.Notes in Math., 1981. vol.871. pp.1-11 crossref(new window)

2.
Lect.Notes in Math., 1981. vol.871. pp.12-19 crossref(new window)

3.
Kyungpook Math.J., 1999. vol.39. pp.215-230

4.
Appl.Categ.Structures, 2000. vol.8. pp.475-486

5.
preprint, 0000.

6.
A Compendium of Continuous Lattices, 1980.

7.
Math.Proc.Cambridge Philos.Soc., 1984. vol.96. pp.73-79 crossref(new window)

8.
Kyungpook Math.J., 1995. vol.35. pp.85-91

9.
Cambridge Studies in Advanced Mathematics, 1982. 3,

10.
J.of KMS, 1988. vol.25. pp.11-23

11.
Math.Proc.Cambridge Phil.Soc., 1986. vol.99. pp.473-480 crossref(new window)

12.
Lect.Notes in Math., 1972. vol.274. pp.97-136 crossref(new window)