JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TOPOLOGICAL R2-DIVISIBLE R3-SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
TOPOLOGICAL R2-DIVISIBLE R3-SPACES
Im, Jang-Hwan;
  PDF(new window)
 Abstract
There are many models to study topological -planes. Unlike topological -planes, it is difficult to find models to study topological R)-spaces. If an 4-dimensional affine plane intersects with R, we are able to get a geometrical structure on R which is similar to R-space, and called -divisible R-space. Such spatial geometric models is useful to study topological R-spaces. Hence, we introduce some classes of topological -divisible R-spaces which are induced from 4-dimensional anne planes.
 Keywords
topological geometry;spatial gemetry;
 Language
English
 Cited by
 References
1.
Simon Stevin, 1981. vol.55. pp.221-235

2.
Geom. Ded, 1984. vol.16. pp.179-193

3.
Atti. Sem. Mat. Fis. Modena, 1985. vol.24. pp.173-180

4.
Resultate der Math, 1987. vol.12. pp.37-61

5.
Resultate der Math, 0000. vol.6. pp.27-35

6.
4-dimensional compact projective planes of orbit type(1,1), 0000.

7.
The geometry of geodesics, 1965.

8.
Dissertation, 1986.

9.
Note di Matematica, 1995. vol.15. 2, pp.175-190

10.
Singular Homology Theory, 1980.

11.
Dissertation, 1993.

12.
Abh. Math. Sem. Ham-burg, 0000. vol.28. pp.250-261 crossref(new window)

13.
Adv. in Math, 1967. vol.2. pp.1-60 crossref(new window)

14.
Math. Z., 1970. vol.117. pp.112-124 crossref(new window)

15.
Math. Z., 1971. vol.121. pp.104-110 crossref(new window)

16.
Compact Projective Planes, De Gruyter, 1995.