JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TOPOLOGICAL R2-DIVISIBLE R3-SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
TOPOLOGICAL R2-DIVISIBLE R3-SPACES
Im, Jang-Hwan;
  PDF(new window)
 Abstract
There are many models to study topological -planes. Unlike topological -planes, it is difficult to find models to study topological R)-spaces. If an 4-dimensional affine plane intersects with R, we are able to get a geometrical structure on R which is similar to R-space, and called -divisible R-space. Such spatial geometric models is useful to study topological R-spaces. Hence, we introduce some classes of topological -divisible R-spaces which are induced from 4-dimensional anne planes.
 Keywords
topological geometry;spatial gemetry;
 Language
English
 Cited by
 References
1.
Simon Stevin, vol.55. pp.221-235

2.
Geom. Ded, vol.16. pp.179-193

3.
Atti. Sem. Mat. Fis. Modena, vol.24. pp.173-180

4.
Resultate der Math, vol.12. pp.37-61 crossref(new window)

5.
Resultate der Math, vol.6. pp.27-35

6.
4-dimensional compact projective planes of orbit type(1,1),

7.
The geometry of geodesics,

8.
Dissertation,

9.
Note di Matematica, vol.15. 2, pp.175-190

10.
Singular Homology Theory,

11.
Dissertation,

12.
Abh. Math. Sem. Ham-burg, vol.28. pp.250-261 crossref(new window)

13.
Adv. in Math, vol.2. pp.1-60 crossref(new window)

14.
Math. Z., vol.117. pp.112-124 crossref(new window)

15.
Math. Z., vol.121. pp.104-110 crossref(new window)

16.
Compact Projective Planes, De Gruyter,