JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERALIZED HERMITE INTERPOLATION AND SAMPLING THEOREM INVOLVING DERIVATIVES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GENERALIZED HERMITE INTERPOLATION AND SAMPLING THEOREM INVOLVING DERIVATIVES
Shin, Chang-Eon;
  PDF(new window)
 Abstract
We derive the generalized Hermite interpolation by using the contour integral and extend the generalized Hermite interpolation to obtain the sampling expansion involving derivatives for band-limited functions f, that is, f is an entire function satisfying the following growth condition |f(z)| A exp(|y|) for some A, > 0 and any z
 Keywords
generalized Hermite interpolation;sampling theorem;contour integral;
 Language
English
 Cited by
1.
A Modification of Hermite Sampling with a Gaussian Multiplier, Numerical Functional Analysis and Optimization, 2015, 36, 4, 419  crossref(new windwow)
2.
Generalized sinc-Gaussian sampling involving derivatives, Numerical Algorithms, 2016  crossref(new windwow)
3.
Truncation error estimates for generalized Hermite sampling, Numerical Algorithms, 2016  crossref(new windwow)
 References
1.
Interpolation and Approximation, 1963.

2.
Foundations, 1996.

3.
I.R.E. Trans. Inform. Theory, 1956. vol.IT-2. pp.139-146

4.
Inform. Control, 1960. vol.3. pp.26-31 crossref(new window)

5.
Birkhoff Interpolation, 1983.

6.
Theory and Practice, 2001.

7.
Inform. Control, 1973. pp.172-182 crossref(new window)

8.
Theor. Probability Appl., 1967. vol.12. pp.647-657 crossref(new window)

9.
IEEE Trans. Inform. Theory, 1989. vol.IT-35. 6, pp.1223-1227

10.
General Sampling Theorem Using Contour Integral, 0000. crossref(new window)

11.
Advances in Shannon's Sampling Theory, 1993.