JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE MINIMAL ENERGY SOLUTION IN A QUASILINEAR ELLIPTIC EQUATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE MINIMAL ENERGY SOLUTION IN A QUASILINEAR ELLIPTIC EQUATION
Park, Sang-Don; Kang, Chul;
  PDF(new window)
 Abstract
In this paper we seek a positive, radially symmetric and energy minimizing solution of an m-Laplacian equation, -div$({\nabla}u^{m-2}{\nabla}u)\;=\;h(u)$. In the variational sense, the solutions are the critical points of the associated functional called the energy, $J(v)\;=\;\frac{1}{m}\;\int_{R^N}\;{\nabla}v^m\;-\;\int_{R^N}\;H(v)dx,\;where\;H(v)\;=\;{\int_0}^v\;h(t)dt$. A positive, radially symmetric critical point of J can be obtained by solving the constrained minimization problem; minimize{$\int_{R^N}{\nabla}u^mdx\;\int_{R^N}\;H(u)d;=\;1$}. Moreover, the solution minimizes J(v).
 Keywords
quasilinear elliptic;m-Laplacian;constrained minimization;variational equation;radially symmetric;Lagrange multiplier;
 Language
English
 Cited by
 References
1.
Arch. Mech. Anal., 1983. vol.82. pp.313-375

2.
Comm. Math. Phys., 1978. vol.58. 2, pp.211-221 crossref(new window)

3.
Proc. London Math. soc., 1975. vol.30. pp.76-94 crossref(new window)

4.
Nonlinear partial differential equations and free boundary, 1985. vol.I.

5.
Nonlinear Analysis, Theory and Methods and Applications, 1989. vol.13.

6.
Nonlinear Analysis, Theory, Methods and Applications, 1988. vol.12. 11, pp.1203-1219 crossref(new window)

7.
Comm. Math. Phys., 1977. vol.55. pp.149-162 crossref(new window)

8.
Variational methods, 1990.