JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE INDEPENDENT RANDOM VARIABLES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE INDEPENDENT RANDOM VARIABLES
Hu, Tien-Chung; Sung, Soo-Hak; Volodin, Andrei;
  PDF(new window)
 Abstract
Under some conditions on an array of rowwise independent random variables, Hu et at. (1998) obtained a complete convergence result for law of large numbers with rate {an/, n 1} which is bounded away from zero. We investigate the general situation for rate {an/, n 1) under similar conditions.
 Keywords
Arrays;rowwise independence;sums of independent random variables;complete convergence;Rademacher type p Banach space;random elements;
 Language
English
 Cited by
1.
ON COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE INDEPENDENT RANDOM ELEMENTS,;;;

대한수학회지, 2007. vol.44. 2, pp.467-476 crossref(new window)
2.
ON COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF I.I.D. RANDOM VARIABLES WITH APPLICATION TO MOVING AVERAGE PROCESSES,;

대한수학회보, 2009. vol.46. 4, pp.617-626 crossref(new window)
3.
ON THE COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES,;;;;

대한수학회지, 2013. vol.50. 2, pp.379-392 crossref(new window)
1.
On complete convergence for arrays of rowwise -negatively associated random variables, Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, 12, e1075  crossref(new windwow)
2.
ON THE COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES, Journal of the Korean Mathematical Society, 2013, 50, 2, 379  crossref(new windwow)
3.
On the Strong Rates of Convergence for Arrays of Rowwise Negatively Dependent Random Variables, Stochastic Analysis and Applications, 2011, 29, 3, 375  crossref(new windwow)
4.
Complete convergence of weighted sums for arrays of rowwise φ-mixing random variables, Applications of Mathematics, 2014, 59, 5, 589  crossref(new windwow)
5.
New Versions of Some Classical Stochastic Inequalities, Stochastic Analysis and Applications, 2013, 31, 1, 62  crossref(new windwow)
6.
On Complete Convergence for Arrays of Row-Wise Negatively Associated Random Variables, Theory of Probability & Its Applications, 2008, 52, 2, 323  crossref(new windwow)
7.
On Complete Convergence for Arrays of Random Elements and Variables, Stochastic Analysis and Applications, 2007, 25, 2, 281  crossref(new windwow)
8.
Complete convergence of weighted sums under negative dependence, Statistical Papers, 2011, 52, 2, 413  crossref(new windwow)
9.
On complete convergence for arrays of rowwise negatively associated random variables, Теория вероятностей и ее применения, 2007, 52, 2, 393  crossref(new windwow)
10.
On Complete Convergence for Arrays of Random Elements, Stochastic Analysis and Applications, 2008, 26, 3, 595  crossref(new windwow)
11.
Convergence Rates in the Law of Large Numbers for Arrays of Banach Valued Martingale Differences, Abstract and Applied Analysis, 2013, 2013, 1  crossref(new windwow)
12.
More on complete convergence for arrays, Statistics & Probability Letters, 2005, 71, 4, 303  crossref(new windwow)
13.
On Complete Convergence for Arrays of Dependent Random Variables, Communications in Statistics - Theory and Methods, 2012, 41, 9, 1663  crossref(new windwow)
14.
Some complete convergence results for row sums from arrays of rowwise independent random elements in Rademacher type p Banach spaces, Lobachevskii Journal of Mathematics, 2011, 32, 1, 71  crossref(new windwow)
15.
Convergence rates in the law of large numbers for arrays of martingale differences, Journal of Mathematical Analysis and Applications, 2014, 417, 2, 733  crossref(new windwow)
16.
On complete convergence for arrays, Statistics & Probability Letters, 2006, 76, 15, 1631  crossref(new windwow)
 References
1.
Commun. Statist. Theor. Meth., 1987. vol.16. pp.241-252 crossref(new window)

2.
An Introduction to Probability Theory and Its Applications Ⅰ,(3rd ed.), 1968.

3.
Proceedings of the Fith Prague Symposium, Physica Verlag held September, 1994. pp.4-9;237-247

4.
Studies Math., 1974. vol.52. pp.159-186

5.
Proc. Nat. Acad. Sci., 1947. vol.33. pp.25-31 crossref(new window)

6.
Statist. Probab. Lett., 1998. vol.38. pp.27-31 crossref(new window)

7.
Stochastic Analysis and Applications, 1999. vol.17. pp.963-992 crossref(new window)

8.
Statist. Probab. Lett., 1998. vol.38;47. 1, pp.27-31;209-211

9.
Random Series and Stochostic Integralsc: Single and Multiple,, 1992.

10.
Lecture Notes in Mathematics, 1986. vol.1206. pp.167-241 crossref(new window)