JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RADIAL SYMMETRY OF TOPOLOGICAL ONE- VORTEX SOLUTIONS IN THE MAXWELL-CHERN-SIMONS-HIGGS MODEL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
RADIAL SYMMETRY OF TOPOLOGICAL ONE- VORTEX SOLUTIONS IN THE MAXWELL-CHERN-SIMONS-HIGGS MODEL
Han, Jong-Min;
  PDF(new window)
 Abstract
In this paper we show the radial symmetry of topological one-vortex solutions in the Maxwell-Chern-Simons-Higgs Model.
 Keywords
Maxwell-Chern-Simons-Higgs Model;topological one-vortex solutions;radial symmetry;method of moving planes;
 Language
English
 Cited by
1.
RADIAL SYMMETRY OF TOPOLOGICAL SOLUTIONS IN THE SELF-DUAL MAXWELL-CHERN-SIMONS GAUGED O(3) SIGMA MODEL,;

대한수학회보, 2011. vol.48. 5, pp.1111-1117 crossref(new window)
1.
Self-dual Maxwell–Chern–Simons theory on a cylinder, Journal of Physics A: Mathematical and Theoretical, 2011, 44, 13, 135203  crossref(new windwow)
2.
Symmetric Chern-Simons-Higgs Vortices, Communications in Mathematical Physics, 2009, 285, 3, 1005  crossref(new windwow)
3.
Uniqueness of topological multivortex solutions in the Maxwell–Chern–Simons model, Journal of Functional Analysis, 2016, 270, 6, 2073  crossref(new windwow)
 References
1.
J. Func. Anal., 2002. vol.196. pp.87-118 crossref(new window)

2.
J. Diff. Eqns., 1997. vol.134. pp.154-182 crossref(new window)

3.
RIM-GARC Preprint Ser., 1997. vol.97. 50,

4.
Proc. Royal Soc. Edinburgh, 2000. vol.A 130. pp.1293-1309 crossref(new window)

5.
Phys. Rev. Lett., 1990. vol.64. pp.2230-2233 crossref(new window)

6.
Phys. Rev. Lett., 1990. vol.64. pp.2234-2237 crossref(new window)

7.
Vortices and Monopoles, 1980.

8.
Phys. Lett., 1990. vol.B252. pp.79-83 crossref(new window)

9.
Nonlinear Anal. TMA, 2002. vol.50. pp.1093-1106 crossref(new window)

10.
Comm. Pure Appl. Math., 2000. vol.53. pp.811-851 crossref(new window)