JOURNAL BROWSE
Search
Advanced SearchSearch Tips
학교수학에서의 정당화 지도의 필요성 및 가능성에 관한 연구
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
학교수학에서의 정당화 지도의 필요성 및 가능성에 관한 연구
;;
  PDF(new window)
 Keywords
학교수학;증명;정당화;확률론적 논증;
 Language
Korean
 Cited by
 References
1.
교육부, 제 7차 수학과 교육과정, 서울: 대한교과서주식회사, 1997.

2.
대한수학교육학회, 증명지도, 제 38회 수학교육학 집중세미나 자료집, 2002.

3.
대한수학교육학회, The Nature of Proof, 제 43회 수학교육학 집중세미나 자료집, 2004.

4.
박병철 역, 페르마의 마지막 정리, 영림카디널, 1999.

5.
박승안, 대수학과 암호학, 경문사, 1999.

6.
박주희, 점진적 구성의 증명지도를 위한 학습자료 개발 연구, 한국교원대학교 석사학위논문, 2000.

7.
신송임, 비형식적 정당화를 활요한 증명지도 사례 연구, 학국교원대학교 석사학위논문, 2004.

8.
신현용, 영지식증명. 한국수학교육학회 뉴스레터 제 13권 제 4호, 서울 : 한국수학교육학회(1997), 23-25.

9.
신형용.승영조 역, 무한의 신비, 승산, 2002.

10.
신현용.최은주, 인지갈등에 의한 수학 영재교육, 수학교육학술지: 한국수학교육학회시리즈 F, 제5집, 서울:한국수학교육학회(2000), 155-163.

11.
이충호 역, 이야기 파라독스, 사계절, 1990.

12.
조영수.강주호, 선형형대수학 제2판, 경문사, 2004.

13.
한인기.강인주, 삼각형 무게 중심의 증명에 관한 다양한 접근 방법들, 수학교육논문집: 한국수학교육학회시리즈 E, 제10집, 서울: 한국수학교육학회 (2000), 143-154.

14.
M. Agrawal, N. Kayal and N. Saxena, PRIMES is in P, IIT Kanpur preprint; http://www.cse.iitk.ac.in/news/primality.html (2002).

15.
G. E. Andrews, The death of proof? Semi-rigorous mathematics? You've got to be kidding!, The Math. Intelligencer 16 (1994), no. 4., 16-18. crossref(new window)

16.
M. Atiyah et al., Responses to theoretical mathematics: Toward a cultural synthesis of mathematics and theoretical physics, Bull. Amer. Math. Soc. 30 (1994), no. 2, 178-211. crossref(new window)

17.
L. Babai, Trading group theory for randomness, Proc. 17th Annual ACM Symposium on the Theory of Computing (1985), 421-429. crossref(new window)

18.
F. Bornemann, PRIMES is in P: a breakthrough for "Everyman", Notices Amer. Math. Soc. 50 (2003), no. 5, 545-552.

19.
G. Brassard, D. Chaum and C. Crepeau, Minimum disclosure proofs of knowledge, J. Comput. System Sci. 37 (1988), no. 2, 156-289. crossref(new window)

20.
R. Brunner, The telephone directory and probability, Mathematics Teacher, December (1997).

21.
G. J. Chaitin, Randomness and mathematical proof, Scientific American, May (1975), 47-52.

22.
D. J. Chalmers, The Two-Envelope Paradox: A Complete Analysis?, http://www.u.arizona.edu/ chalmers/papers/envelope.html (2001).

23.
C. Geer, Factoring uncertainty into retirement planning: The Monte Carlo Method, Fortune, January (1999).

24.
S. Goldwasser, S. Micali and C. Rackoff, The knowledge complexity of interactive proof system, Proc. 17th Annual ACM Symposium on the Theory of Computing (1985), 291-304. crossref(new window)

25.
P. Hoffman, The Man Who Loved Only Numbers, Hyperion, New York(1998): 신현용 역. 우리 수학자 모두는 약간 미친 겁니다, 승산, 1999.

26.
J. Horgan, The death of proof, The Scientific American 269 (1993), 92-103.

27.
A. Jaffe and F. Quinn, Theoretical mathematics: Toward a cultural synthesis of mathematics and theoretical physics, Bull. Amer. Math. Soc. 29 (1993), no. 2, 1-13. crossref(new window)

28.
R. Kapadia and M. Borovcnik (Eds.), Chance encounters: probability in education, Kluwer Academic Publishers, 1991.

29.
E. Kranakis, Primality and Cryptography, B. G. Teubner (1986).

30.
I. Lakatos, Proofs and Refutations, New York: Cambridge University Press, 1976.

31.
K. S. Lee and H. Shin, Proofs for Gifted Students, J. Korea Soc. Math. Educ. Ser. F: Studies in Mathematical Education 6 (2001), 167-177.

32.
E. McClintock and Z. Jiang, Spreadsheets: Powerful tools for probability simulations, Mathematics Teacher, October (1997).

33.
E. Nagel and R. Newman, Godel's Proof, New York University Press, 1958.

34.
J. A. Paulos, Innumeracy, Penguin Books, 1988.

35.
G. Polya, How to solve it, New York: Doubleday, 1957.

36.
W. C. Salmon, Confirmation, Scientific American 269 (1973), 75-83. crossref(new window)

37.
H. Shin, A Brief Survey of Zero-Knowledge Proofs, J. Korea Institute of Information Security and Cryptology 4 (1994), no. 2, 39-54.

38.
H. Shin, A mathematical program for high schools of gifted students, In preparation.

39.
H. Shin and I. Han, Mathematics Education for Gifted Students in Korea, A Regular Talk. ICME9, Tokyo, Japan (2000).

40.
G. G. Szpiro, Kepler's Conjecture, Wiley, 2003.

41.
R. Thom, "Modern" Mathematics: An Educational and Philosophic Error?, The American Scientist 59 (1971), no. 6, 695-699.

42.
R. Thom, Modern mathematics: does it extist?, in Howson(Ed.), Development in Mathematical Education (1973), 194-209.

43.
R. Wilson, Four Colors Suffice, Princeton, 2002.