JOURNAL BROWSE
Search
Advanced SearchSearch Tips
OPENLY SEMIPRIMITIVE PROJECTIVE MODULE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
OPENLY SEMIPRIMITIVE PROJECTIVE MODULE
Bae, Soon-Sook;
  PDF(new window)
 Abstract
In this paper, a left module over an associative ring with identity is defined to be openly semiprimitive (strongly semiprimitive, respectively) by the zero intersection of all maximal open fully invariant submodules (all maximal open submodules which are fully invariant, respectively) of it. For any projective module, the openly semiprimitivity of the projective module is an equivalent condition of the semiprimitivity of endomorphism ring of the projective module and the strongly semiprimitivity of the projective module is an equivalent condition of the endomorphism ring of the projective module being a sub direct product of a set of subdivisions of division rings.
 Keywords
free;projective;semiprimitive;openly (strongly) semi-primitive module;maximal open submodule;prime endomorphism;
 Language
English
 Cited by
1.
REGULAR ENDOMORPHISM RINGS OF PROJECTIVE MODULES,;;;

호남수학학술지, 2008. vol.30. 4, pp.617-629 crossref(new window)
1.
REGULAR ENDOMORPHISM RINGS OF PROJECTIVE MODULES, Honam Mathematical Journal, 2008, 30, 4, 617  crossref(new windwow)
 References
1.
H. Bass, Finistic Dimension and a Homological Generalization of Semiprimary Rings, Trans. Amer. Math. Soc. 95 (1960), 466-488. crossref(new window)

2.
I. N. Herstein, Noncommutative rings, MAA Notes, 1968.

3.
R. Ware and J. Zelmanowitz, The Jacobson Radical of the Endomorphism Ring of a Projective Module, Proc. Amer. Math. Soc. 26 (1970), 15-20. crossref(new window)

4.
R. Ware, Endomorphism Rings of Projective Modules, Trans. Amer. Math. Soc. 55 (1971), 233-256. crossref(new window)

5.
F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, New York; Spring-Verlag, 1973.

6.
I. Beck, On Modules whose Endomorphism ring is Local, Israel J. Math. 29 (1978), no. 4, 393-407. crossref(new window)

7.
T. W. Hungerford, Algebra, New York; Spring -Verlag, 1984.

8.
S.-S. Bae, On Reject of Subdirect Product, Kyungnam University, Thesis Collection 14 (1987), 7-10.

9.
S.-S. Bae, Certain Discriminations of Prime Endomorphism and Prime Matrix, East Asian Math. J. 14 (1998 no. 2), 259-268.

10.
S.-S. Bae, Generalized Schur's Lemmas, Journal of the Graduate School, Kyungnam University 16 (2001 no. 2), 7-11.