JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE SPACE OF FOURIER HYPERFUNCTIONS AS AN INDUCTIVE LIMIT OF HILBERT SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE SPACE OF FOURIER HYPERFUNCTIONS AS AN INDUCTIVE LIMIT OF HILBERT SPACES
Kim, Kwang-Whoi;
  PDF(new window)
 Abstract
We research properties of the space of measurable functions square integrable with weight exp$2\nu x$, and those of the space of Fourier hyperfunctions. Also we show that the several embedding theorems hold true, and that the Fourier-Lapace operator is an isomorphism of the space of strongly decreasing Fourier hyperfunctions onto the space of analytic functions extended to any strip in which are estimated with the aid of a special exponential function exp(|x|).
 Keywords
Fourier hyperfunction;Fourier(-Laplace) operator;pseudodifferential operator;a countably Hilbert space;Sovolev′s embedding theorem;inductive(projective) limit;
 Language
English
 Cited by
1.
Abstract Volterra Integro-Differential Equations: Approximation and Convergence of Resolvent Operator Families, Numerical Functional Analysis and Optimization, 2014, 35, 12, 1579  crossref(new windwow)
2.
New spaces of functions and hyperfunctions for Hankel transforms and convolutions, Monatshefte für Mathematik, 2008, 153, 2, 89  crossref(new windwow)
 References
1.
S.-Y. Chung, D. Kim and S. K. Kim, Structure of the extended Fourier hyperfunctions, Jap. J. Math. 19 (1993), no. 2, 217–226.

2.
I. M. Gel'fand and G. E. Shilov, Generalized functions, Vol. 2, Acad. Press New York and London, 1968.

3.
S. G. Gindikin and L. R. Volevich, Distributions and Convolution Equations, Gordon and Breach Sci. Publ., 1992.

4.
L. Hormander, Linear Partial Differential Operators, Springer-Verlag Berlin New York, 1969.

5.
K. W. Kim, Denseness of test functions in the space of extended Fourier hyperfunctions, Preprint. crossref(new window)

6.
A. Kaneko, Introduction to hyperfunctions, KTK Sci. Publ. Tokyo, 1992.

7.
H. Komatsu, Introduction to the theory of generalized functions, Iwanami Sheoten, Tokyo, 1978. (Jananeses).

8.
K. W. Kim, S.-Y. Chung and D. Kim, Fourier hyperfunctions as the boundary values of smooth solutions of heat equations, Publ. Res. Inst. Math. Sci. 29 (1993), no. 2, 289–300. crossref(new window)

9.
S. G. Krantz and H. R. Parks, A Primer of real analytic functions, Birkhauser Verlag, 1992.

10.
E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean spaces, Princeton Univ. Press, 1975.

11.
M. E. Taylor, Pseudodifferential operators, Princeton Univ. Press, 1981.

12.
F. Treves, Topological vector spaces, distributions and kernels, Acad. Press New York and London, 1967.

13.
K. Yosida, Functional analysis, Spriger-Verlag Berlin New York, 1980.