JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE HARMONIC DISTRIBUTIONS ON LIE GROUP
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE HARMONIC DISTRIBUTIONS ON LIE GROUP
Choi, Boo-Yong;
  PDF(new window)
 Abstract
Harmonic distribution is the distribution which has the minimal value of functional called energy. In this paper it is shown as a specific distribution of semisimple Lie group whose manifold is compact.
 Keywords
harmonic map;distribution;compact semisimple Lie group;
 Language
English
 Cited by
1.
Two notes on harmonic distributions, Differential Geometry and its Applications, 2014, 37, 54  crossref(new windwow)
 References
1.
B. Y. Choi and J. W. Yim, Distributions on Riemannian manifolds, which are Harmonic maps, Tohoku math. J. 55 (2003), 175-188. crossref(new window)

2.
J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68. crossref(new window)

3.
J. Eells, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), no. 5, 385-524. crossref(new window)

4.
T. Ishihara, Harmonic section of tangent bundles, J. Math. Tokushima Univ. 13 (1979), 23-27.

5.
G. Jensen and M. Rigoli, Harmonic Gauss maps, Pacific J. Math. 136 (1989), no. 2, 261-282. crossref(new window)

6.
J. J. Konderak, On harmonic vector field, Publ. Mat. 36 (1992), no. 1, 217-228. crossref(new window)

7.
H. Urakawa, Calculus of variations and harmonic maps, 132 (1993) Amer. Math. Soc.

8.
C. M. Wood, The Gauss section of a Riemannian immersion, J. London math. Soc. 33 (1986), no. 2, 157-168 crossref(new window)

9.
Z. Zhang, Best distributions on Riemannian manifolds and elastic deformations with constant principal strains, Ph. D. Thesis (1993).