JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON NULL DESIGNS OF DUAL POLAR SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON NULL DESIGNS OF DUAL POLAR SPACES
CHO, SOO-JIN;
  PDF(new window)
 Abstract
Null designs on the poset of dual polar spaces are considered. A poset of dual polar spaces is the set of isotropic subspaces of a finite vector space equipped with a nondegenerate bilinear form, ordered by inclusion. We show that the minimum number of isotropic subspaces to construct a nonzero null t-design is ${\prod}^{t}_{i
 Keywords
null designs;minimal null designs;dual polar spaces;
 Language
English
 Cited by
 References
1.
E. Artin, Geometric algebra, Interscience, New York, Interscience Tracks in Pure and Applied Mathematics 3 (1957)

2.
E. Bannai and T. Ito, Algebraic combinatorics I, Association Schemes, The Ben- jamin/Cummings Publishing Company, Inc., 1984

3.
R. Carter, Simple groups of Lie type, Wiley-Interscience, London, 1972

4.
S. Cho, Minimal null designs and a density theorem of posets, European J. Combin. 19 (1998), 433-440 crossref(new window)

5.
S. Cho, Minimal null designs of subspace lattice over Finite Fields, Linear Algebra Appl. 282 (1998), 199-220 crossref(new window)

6.
S. Cho, On the support size of null designs of Finite ranked posets, Combinatorica 19 (1999), 589-595 crossref(new window)

7.
P. Frankl and J. Pach, On the number of sets in a null t-design, European J. Combin. 4 (1983), 21-23 crossref(new window)

8.
S. Li, R. Graham and W. Li,On the structure of t-designs, SIAM J. Alg. Disc. Math. 1 (1980), 8-14 crossref(new window)

9.
G. James, Representations of general linear groups, LMS Lecture Note Series 94, Cambridge University Press, 1984

10.
R. Liebler and K. Zimmermann, Combinatorial Sn-modules as codes, J. Algebraic Combin. 4 (1995), 47-68 crossref(new window)

11.
R. Stanley, Enumerative combinatorics vol 1, Wadsworth & Brooks/Cole, 1986

12.
D. Stanton, Some q-Krawtchouk polynomials on Chevalley groups, Amer. J. Math. 102 (1986), 625-662 crossref(new window)

13.
D. Stanton, t-designs in classical association schemes, Graphs Combin. 2 (1980), 283-286 crossref(new window)