JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A HYBRID METHOD FOR HIGHER-ORDER NONLINEAR DIFFUSION EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A HYBRID METHOD FOR HIGHER-ORDER NONLINEAR DIFFUSION EQUATIONS
KIM JUNSEOK; SUR JEANMAN;
  PDF(new window)
 Abstract
We present results of fully nonlinear time-dependent simulations of a thin liquid film flowing up an inclined plane. Equations of the type arise in the context of thin liquid films driven by a thermal gradient with a counteracting gravitational force, where h = h(x, t) is the fluid film height. A hybrid scheme is constructed for the solution of two-dimensional higher-order nonlinear diffusion equations. Problems in the fluid dynamics of thin films are solved to demonstrate the accuracy and effectiveness of the hybrid scheme.
 Keywords
nonlinear diffusion equations;thin film;nonlinear multigrid method;
 Language
English
 Cited by
1.
THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF A PHASE-FIELD MODEL FOR ANISOTROPIC INTERFACIAL ENERGY,;

대한수학회논문집, 2007. vol.22. 3, pp.453-464 crossref(new window)
1.
Numerical studies of the fingering phenomena for the thin film equation, International Journal for Numerical Methods in Fluids, 2011, 67, 11, 1358  crossref(new windwow)
2.
Adaptive mesh refinement for simulation of thin film flows, Meccanica, 2014, 49, 1, 239  crossref(new windwow)
 References
1.
A. L. Bertozzi and M. P. Brenner, Linear stability and transient growth in driven contact lines, Phys. Fluids 9 (1997), 530-539 crossref(new window)

2.
A. L. Bertozzi, A. Munch, X. Fanton, and A.M. Cazabat, Contact line stabil- ity and 'undercompressive shocks' in driven thin film fiow, Phys. Rev. Lett. 81 (1998), 5169-5172 crossref(new window)

3.
A. L. Bertozzi, A. Munch, and M. Shearer, Undercompressive shocks in thin film flows, Phys. D 134 (1999), 431-464 crossref(new window)

4.
C. H. Ho and Y. C. Tai, Micro-electro-mechanical-systems (MEMS) and fluid flows, Annu. Rev. Fluid Mech. 30 (1998), 579-612 crossref(new window)

5.
T. G. Myers, Thin films with high surface tension, SIAM Rev. 40 (1998), 441-462 crossref(new window)

6.
C. W. Shu and S. Osher, Efficient implementation of essentially non- oscillatory shock capturing schems II, J. Comput. Phys. 83 (1989), 32-78 crossref(new window)

7.
S. M. Troian, E. Herbolzheimer, S. A. Safran, and J. F. Joanny, Fingering instability of driven spreading films, Europhys. Lett. 10 (1989), 25-30 crossref(new window)

8.
U. Trottenberg, C. Oosterlee and A. Schuller, Multigrid, Academic press, 2001