JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE STABILITY OF THE GENERALIZED G-TYPE FUNCTIONAL EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE STABILITY OF THE GENERALIZED G-TYPE FUNCTIONAL EQUATIONS
KIM, GWANG-HUI;
  PDF(new window)
 Abstract
In this paper, we obtain the generalization of the Hyers-Ulam-Rassias stability in the sense of Gavruta and Ger of the generalized G-type functional equations of the form $f({{\varphi}(x))
 Keywords
Functional equation;Hyers-Ulam stability;Hyers-Ulam­Rassias stability;G-function;double gamma function;
 Language
English
 Cited by
1.
ON FUNCTIONAL INEQUALITIES ASSOCIATED WITH JORDAN-VON NEUMANN TYPE FUNCTIONAL EQUATIONS,;

대한수학회논문집, 2008. vol.23. 3, pp.371-376 crossref(new window)
 References
1.
E. W. Barnes, The theory of the double gamma function, Proc. Roy. Soc. London Ser. A 196 (1901), 265-388

2.
E. W. Barnes, The theory of the G-function, Quart. J. Math. 31 (1899), 264-314

3.
J. Choi and H. M. Srivastava, Certain classes of series involving the Zeta func- tion, J. Math. Anal. Appl. 231 (1999), 91-117 crossref(new window)

4.
P. Gavruta, A Generalization of the Hyers-Ulam-Rassias stability of approxi- mately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436 crossref(new window)

5.
R. Ger, Superstability is not natural, Roczik Nauk.-Dydakt. Prace Mat. 159 (1993), 109-123

6.
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224 crossref(new window)

7.
D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of functional equation in Several Variables, Birkhauser, Basel, 1998

8.
S. M. Jung, On the modified Hyers-Ulam-Rassias stability of the functional equation for gamma function, Mathematica 39(62) (1997), no. 2, 233-237

9.
S. M. Jung, On the stability of G-functional equation, Results Math. 33 (1998), 306-309 crossref(new window)

10.
K. W. Jun, G. H. Kim and Y. W. Lee, Stability of generalized gamma and beta functional equations, Aequationes Math. 60 (2000), 15-24 crossref(new window)

11.
G. H. Kim, On the stability of generalized Gamma functional equation, Internat. J. Math. Math. Sci. 23 (2000), 513-520 crossref(new window)

12.
G. H. Kim, Stability of the G-functional equation, J. Appl. Math. Comput. 23 (2000), 513-520

13.
G. H. Kim, The stability of generalized Gamma functional equation, Nonlinear Studies. 7(1) (2000), 92-96

14.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300

15.
S. M. Ulam, 'Problems in Modern Mathematics' Chap. VI, Science edit. Wiley, New York, 1960