JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE MASS FORMULA OF ORDERS OVER A DYADIC LOCAL FIELD
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE MASS FORMULA OF ORDERS OVER A DYADIC LOCAL FIELD
JUN, SUNG-TAE; KIM, IN-SUK;
  PDF(new window)
 Abstract
In this paper, we study the arithmetic properties of orders in a quaternion algebra over a dyadic local field and we find the mass formula of orders.
 Keywords
order;mass formula;dyadic local field;
 Language
English
 Cited by
1.
ZETA FUNCTIONS ON A CETAIN ORDERS IN A QUATERNION ALGEBRA,;;

한국수학교육학회지시리즈B:순수및응용수학, 2012. vol.19. 3, pp.297-304 crossref(new window)
1.
ZETA FUNCTIONS ON A CETAIN ORDERS IN A QUATERNION ALGEBRA, The Pure and Applied Mathematics, 2012, 19, 3, 297  crossref(new windwow)
 References
1.
A. Atkin and J. Lehner, Hecke operators on $\Gamma o$(N), Math. Ann. 185 (1970),134-160 crossref(new window)

2.
J. Brezinski, On automorphisms of Quaternion orders J. Reine Angew. Math. 43 (1992), 102-109

3.
M. Eichler, The basis problem for modular forms and the traces of Hecke operators, Springer-Verlag, Lecture Notes in Math. 320 (1972), 75-151

4.
H. Hijikata, Explicit formula of the traces of the Hecke operators for ${\Gamma}_0$(N), J. Math. Soc. Japan 26 (1974), 56-82 crossref(new window)

5.
H. Hijikata, A. Pizer, and T. Shemanske, Orders in Quaternion Algebras , J. Reine Angew. Math. 394 (1989), 59-106

6.
H. Hijikata, A. Pizer, and T. Shemanske, The basis problem for modular forms on ${\Gamma}_0$(N), Mem. Amer. Math. Soc. 82 (1982)

7.
T. Lam, The algebraic theory of quadratic forms, W.A. Benjamin, 1980

8.
A. Pizer, An Algorithm for computing modular forms on ${\Gamma}_0$(N), J. Algebra 6 (1980), 340-390

9.
A. Pizer, On the arithmetic of Quaternion algebras II, J. Math. Soc. Japan 28 (1976), 676-698 crossref(new window)

10.
A. Pizer, The action of the Canonical involution on Modular forms of weigh 2 on ${\Gamma}_0$(N), Math. Ann. 226 (1977), 99-116 crossref(new window)

11.
I. Reiner, Maximal orders, Academic Press, 1975

12.
A. Weil, Basic number theory, Berlin, Hedelberg, New York: Springer, 1967