JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MODIFICATION TO A BOUND FOR RANDOM ERROR CORRECTION WITH LEE WEIGHT
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MODIFICATION TO A BOUND FOR RANDOM ERROR CORRECTION WITH LEE WEIGHT
JAIN SAPNA;
  PDF(new window)
 Abstract
In [1], Sharma and Goel obtained a bound for random error correcting codes with Lee weight considerations. The purpose of this paper is to first point out a discrepancy in this result and then give a correct version of the same, improving upon the bound tremendously.
 Keywords
linear code;Lee weight;random errors;
 Language
English
 Cited by
1.
SIMULTANEOUS RANDOM ERROR CORRECTION AND BURST ERROR DETECTION IN LEE WEIGHT CODES,;

호남수학학술지, 2008. vol.30. 1, pp.33-45 crossref(new window)
2.
AN UPPER BOUND ON THE NUMBER OF PARITY CHECKS FOR BURST ERROR DETECTION AND CORRECTION IN EUCLIDEAN CODES,;;

대한수학회지, 2009. vol.46. 5, pp.967-977 crossref(new window)
1.
On a Sufficient Condition to Attain Minimum Square Distance in Euclidean Codes, Algebra Colloquium, 2011, 18, 03, 499  crossref(new windwow)
2.
SIMULTANEOUS RANDOM ERROR CORRECTION AND BURST ERROR DETECTION IN LEE WEIGHT CODES, Honam Mathematical Journal, 2008, 30, 1, 33  crossref(new windwow)
3.
Correction of CT burst array errors in the generalized-lee-RT spaces, Acta Mathematica Sinica, English Series, 2010, 26, 8, 1475  crossref(new windwow)
 References
1.
B. D. Sharma and S. N. Goel, A note on bounds for Burst correcting codes with Lee weight consideration, Inform. and Control 33 (1977), 210-216 crossref(new window)

2.
E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968