JOURNAL BROWSE
Search
Advanced SearchSearch Tips
미분방정식의 해의 안정성에 관한 연구
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
미분방정식의 해의 안정성에 관한 연구
;;
  PDF(new window)
 Keywords
안정성;점근적 안정성;지연미분방정식;중립형 지연분방정식;차분방정식;
 Language
Korean
 Cited by
 References
1.
A. Ardito, and P. Ricciardi, Lyapunov Functions for a Generalized Gauss-Type Model, J. Math. Biology 33 (1995), 816-828

2.
P. Auger, R. B. Parra, S. Morand, and E. Sanchez, A predator-prey model with predators using hawk and dove tactics, Mathe. Biosci, 177 (2002), 185-200 crossref(new window)

3.
K. Balachandran, D. G. Park, and Y. C. Kwun, Comparision Theorems for Controllability of Nonlinear Volterra Integrodifferential Systems, J. Math. Anal. Appl. 268 (2002), 457-465 crossref(new window)

4.
R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New York and London, 1963

5.
R. G. Bowers and A. White, The adaptive dynamics of Lotka- Voltera systems with trade-offs, Math. Biosci. 175 (2002), 67-8l crossref(new window)

6.
T. A. Burton, Stability Theory for Volterra Equations, J. Differential Equations 32 (1979), 101-118 crossref(new window)

7.
T. A. Burton, Volterra Integral and Differential Equations, Academic Press, 1983

8.
T. A. Burton and T. Furumochi, Krasnoselskii's fixed point theorem and stability, Nonlinear Anal. 49 (2002), 445-454 crossref(new window)

9.
T. A. Burton and G. Makay, Asymptotic stability for functional differential equations, Acta Math. Hungar 65 (1994), no. 3, 243-25l crossref(new window)

10.
T. A. Burton and B. Zhang, Periodic Solutions of Abstract Differential Equations with Infinite Delay, J. Differential Equations 90 (1991),357-396 crossref(new window)

11.
D. S. Callaway and A. S. Perelson, HIV-l Infection and Low Steady State Viral Loads, Bull. Math. BioI. 64 (2002), 29-64 crossref(new window)

12.
R. S. Cantrell, C. Cosner, and W. F. Fagan, Habitat edges and predator-prey interactions: effects on critical patch size, Math. Biosci. 175 (2002), 31-55 crossref(new window)

13.
Y. Cao, H. I. Freeman, and T. C. Gard, A mapping method for global asymptotic stability of population interaction models with time delays, Nonlinear Anal. 34 (1998), 361-389 crossref(new window)

14.
T. Caraballo, P. Marin-Rubio, and J. Valero, Autonomous and non-autonomous atiractors for differential equations with delays, J. Differential Equations 208 (2005), 9-4l crossref(new window)

15.
W. Chen and Z. Guan, Uniform asymptotic stability for perturbed neutral delay differential equations, J. Math. Anal. Appl. 291 (2004), 578-595 crossref(new window)

16.
W. Chen and X. Lu, Asymptotic stbility in pertubed delay difference systems, J. Math. Anal. Appl. 229 (2004), 261-272

17.
S. K. Choi, N. J. Koo, and Y. H. Goo, Asymptotic property of nonlinear Volterra difference systems, Nonlinear Anal. 51 (2002), 321-337 crossref(new window)

18.
W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D.C. Health and Company, Boston, 1965

19.
E. N. Dancer and Z. Zhang, Dynamics of Lotka- Volterra Competition Systems with Large Interaction, J. Differential Equations 182 (2002), 470-489 crossref(new window)

20.
H. A. EI-Morshedy and S. R. Grace, Comparison theorems for second order nonlinear difference equations, J. Math. Anal. Appl. 306 (2005), 106-121 crossref(new window)

21.
A. Fernandes, C. Gutierrez, and R.Rabanal, Global asymptotic stability for differentiable vector fields, J. Differential Equations 206 (2004), 470-482 crossref(new window)

22.
Y. Fan, L. Wang, and W. Li, Global behavior of a higher order nonlinear difference equation, J. Math. Anal. Appl. 299 (2004), 113-126 crossref(new window)

23.
H. I. Freeman and X. Yuantong, Models of competition in the chemostat with instantaneous and delayed nutrient recycling, J. Math. Biol. 31 (1993), 513-527

24.
H. I. Freedman and J. W. So, Global stability and persistence of simple food chains, Math. Biosci. 76 (1985), 69-86 crossref(new window)

25.
B. S. Goh, Global Stability in Many-Species Systems, The Amer. Natural. 111 (1977), 135-143 crossref(new window)

26.
K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publisher, 1992

27.
M. Gyllenberg, P. Yan, and J. Jiang, The qualitative behavior of a second-order system with zero diagonal coefficient, J. Math. Anal. Appl. 291 (2004),322-340 crossref(new window)

28.
J. Haddock and J. Terijeki, On the location of positive limit sets for functional differential equations with infinite delay, J. Differential Equations 86 (1990), 132

29.
W. Hahn, Stability of Motion, Springer-Verlag, 1967

30.
J. K. Hale, Ordinary Differential Equations, Wiley, New York, 1969

31.
J. K. Hale, Dynamical Systems and Stability, J. Math. Anal. Appl. 26 (1969), 39-59 crossref(new window)

32.
J. K. Hale, Theory of Functional Differential Equations, Springer Verlag, 1976

33.
J. K. Hale and J. Kato, Phase Space for Retarded Equations with Infinite Delay, Funkaialaj Ekvacioj, 21 (1978), 11-41

34.
L. Hatvani, Annulus arguments in the stability theory for functional differential equations, Differ. Integral Equ. Appl. 10 (1997), no. 5, 975-1002

35.
S. B. Hsu, On Global Stability of a Predator-Prey System, Math. Biocsi. 39 (1978),1-10 crossref(new window)

36.
W. Hurewicz, Lectures on Ordinary Differential Equations, John Wiley & Sons, INC, New York, 1958

37.
J. Kalas and L. Barakova, Stability and asymptotic behaviour of a twodimensional differential system with delay, J. Math. Anal. Appl. 269 (2002), 278-300 crossref(new window)

38.
F. Kappel and W. Schappacher, Some Considerations to the Fundamental Theory of Infinte Delay Equations, J. Differential Equations 37 (1980), 141-183 crossref(new window)

39.
Y. Ko, An Aymptotic Stability and a Uniform Asymptotic Stability for Functional Differential Equations, Proc. Amer. Math. Soc. 119 (1993), 535-545 crossref(new window)

40.
Y. Ko,The uniform asymptotic stability for functional differential equations with finite delay, Acta Sci. Math. (Szeged) 66 (2000), 565-577

41.
Y. Ko, The Instability for delay differential equations, Nonlinear Anal. 47(2001), 4049-4057 crossref(new window)

42.
N. N. Krasovskii, Stability of Motion, Stanford, 1963

43.
T. Krisztin and O. Arino, The Two-Dimensional Attractor of a Differential Equation with State-Dependent Delay, J. Dynam. Differential Equations 13 (2001), 453-507 crossref(new window)

44.
Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, 1993

45.
Y. Kuang, Global Stability for Infinite Delay Loika- Volterra Type Systems, J. Differential Equations 103 (1993), no. 2, 221-246 crossref(new window)

46.
V. Lakshimikantham and S. Leela, Differential and Integral Inequalities, vol 1, Academic Press, New York and London, 1969

47.
V. Lakshmikantham and D. Trigiante, Theory of Difference Equations, Academic Press INC, Boston, San Dieago, New York and Tokyo, 1988

48.
J. LaSalle and S. Lefschetz, Stability by Liapunov's Direct Method with Applications, Academic Press, 1961

49.
S. Lefschetz, Stability of Nonlinear Control Systems, Academic Press, London and New York, 1965

50.
A. M. Liapunov, Stability of Motion, Academic Press, 1966

51.
T. Lindstrom, Global stability of a model for competing predators, Nonlinear Anal. 39 (2000), 793-805 crossref(new window)

52.
A. Marin-Sanguine and N. V. Torres, Modelling, Steady State Analysis and Optimization of the Catalytic Efficiency of the Triosephosphate Isomerase, Bull. Math. BioI. 64 (2002), 301-326 crossref(new window)

53.
R. K. Miller and A. N. Michel, Ordinary Differential Equations, Academic Press, 1982

54.
J. M. Nichols and J. D. Nichols, Attractor reconstruction for nonlinear systems: a methodological note, Math. Biosci. 171 (2001), 21-32 crossref(new window)

55.
P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-l infection, Math. Biosci. 179 (2002), 73-94 crossref(new window)

56.
S. Novo, R. Obaya, and A. M. Sanz, Attractor minimal sets for cooperative and strongly convex delay differential systems, J. Differential Equations 208 (2005), 86-123 crossref(new window)

57.
J. Ortega, V. Planas-Bielsa, and T. S. Ratiu, Asymptotic and Lyapunov stability of constrained and Poisson equilibria, J. Differential Equations 214 (2005), 92-127 crossref(new window)

58.
N. Ortiz, Necessary conditions for the neutral problem of Bolza with continuously varying time delay, J. Math. Anal. Appl. 305 (2005), 513-527 crossref(new window)

59.
C. C. Philos and I. K. Purnaras, Asymptotic Behavior of Solution of Second Order Nonlinear Ordinary Differential Equations, Nonlinear Anal. 24 (1995), no. 1, 81-90 crossref(new window)

60.
R. Rabah, G. M. Sklyar, and A. V. Rezounenko, Stability analysis of neutral type systems in Hilbert space, J. Differential Equations 214 (2005), 391-428 crossref(new window)

61.
S. Ruan, The Effect of Delays on Stability and Persistence in Plankton Models, Nonlinear Anal. 24 (1995), no. 5, 575-585 crossref(new window)

62.
Y. Saito, T. Hara, and W. Ma, Harmless delays for permanence and impersistence of a Lotka- Volterra discrete Predator-prey system, Nonlinear Anal. 50 (2002), 703-715 crossref(new window)

63.
H. Sedaghat, Periodicity and convergence, J. Math. Anal. Appl. 291 (2004), 31-39 crossref(new window)

64.
A. B. Silva and M. A. Teixera, Global aymptotic stability on Euclidean spaces, Nonlinear Anal. 50 (2002), 91-114 crossref(new window)

65.
S. Tang and L. Chen, Global Qualitative Analysis for a Ratio-Dependent Predator-Prey Model with Delay, J. Math. Anal. Appl. 266 (2002), 401-419 crossref(new window)

66.
H. Tian, The exponential asymptotic stability of singurarly perturbed delay differential equations with a bounded lag, J. Math. Anal. Appl. 270 (2002), 143-149 crossref(new window)

67.
A. Tsoularis and J. Wallace, Analysis of logistic growth models, Math. Biosci. 179 (2002), 21-55 crossref(new window)

68.
E. Venturino, The Effects of Diseases on Competing Species, Math. Biosci. 174 (2001), 111-131 crossref(new window)

69.
V. Volterra, Theory of Functionals and of Integral and Integra-differential Equations, Dover, New York, 1959

70.
J. Walker, Dynamical Systems and Evolution Equation, Plenum, New York, 1980

71.
ei-Hui Wang and M. Kot, Speeds of invasion in a model with strang or weak Allee effects, Math. Biosci. 171 (2001), 83-97 crossref(new window)

72.
Y. Xiao and L. Chen, Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosci. 171 (2001), 59-82 crossref(new window)

73.
B. Xu, Further Results on the Stability of Linear Systems with Multiple Delays, J. Math. Anal. Appl. 267 (2002), 20-28 crossref(new window)

74.
R. Xu, M. J. Chaplain, and F. A. Davidson, permanence and periodicity of a delayed ratio-dependent predator-prey model with stage structure, J. Math. Anal. Appl. 303 (2005), 602-621 crossref(new window)

75.
R. Xu, F. A. Davidson, and M. A. J. Chaplain, Persistence and stability for a two-species ratio-dependent predator-prey system with distributed time delay, J. Math. Anal. Appl, 269 (2002), 256-277 crossref(new window)

76.
T. Yoshizawa, Stability Theory By Liapunov's Second Method, The Mathematical Society of Japan, 1966

77.
J. Zhang, L. Chen, and X. D. Chen, Persistence and global stability for twospecies nonautonomous competition Lotka- Volterra patch-system with time delay, Nonlinear Anal. 37 (1999), 1019-1028 crossref(new window)

78.
X. Zhang, L. Chen, and A. U. Neuman, The stage-structured predator-prey model and optimal harvesting policy, Math. Biosci, 168 (2000), 201-210 crossref(new window)