JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STRICTLY INFINITESIMALLY GENERATED TOTALLY POSITIVE MATRICES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STRICTLY INFINITESIMALLY GENERATED TOTALLY POSITIVE MATRICES
Chon, In-Heung;
  PDF(new window)
 Abstract
Let G be a Lie group, let L(G) be its Lie algebra, and let exp : denote the exponential mapping. For , we define the tangent set of S by . We say that a semigroup S is strictly infinitesimally generated if S is the same as the semigroup generated by exp(L(S)). We find a tangent set of the semigroup of all non-singular totally positive matrices and show that the semigroup is strictly infinitesimally generated by the tangent set of the semigroup. This generalizes the familiar relationships between connected Lie subgroups of G and their Lie algebrasᆘヨ⨀ጊ㴀Ѐ㘶㐻Ԁ䭃䑎䷙ᜊ؀Íᜒ৬6㘴Ԁ䭃䑎䴀
 Keywords
tangent cone;infinitesimally generated;totally positive matrix;Jacobi matrix;
 Language
English
 Cited by
 References
1.
I. Chon, On an extension of Fekete's lemma, Czechoslovak Math. J. 49 (1999), no. 124, 63-66 crossref(new window)

2.
F. R. Gantmacher, The Theory of Matrices, vol. 1-2, Chelsea Publ. Compo New York, 1960

3.
J. Hilgert, K. H. Hofmann, and J. D. Lawson, Lie groups, convex cones, and semigroups, Oxford University Press, 1989

4.
S. Karlin, Total Positivity, vol. 1, Stanford University Press, 1968

5.
V. S. Varadarajan, Lie groups, Lie algebras, and their representations, SpringerVerlag, New York, 1984

6.
A. M. Whitney, A Reduction Theorem/or Totally Positive Matrices, J. d'Analyse Math. Jerusalem 2 (1952), 88-92 crossref(new window)