JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERALIZED LIOUVILLE PROPERTY FOR SCHRÖDINGER OPERATOR ON GRAPHS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GENERALIZED LIOUVILLE PROPERTY FOR SCHRÖDINGER OPERATOR ON GRAPHS
Kim, Seok-Woo; Lee, Yong-Hah;
  PDF(new window)
 Abstract
We prove that the dimension of the space of positive (bounded, respectively) solutions for the Schrodinger operator whose potential q is nonnegative on a graph with q-regular ends is equal to the number of ends (q-nonparabolic ends, respectively).
 Keywords
Liouville property;Schrodinger operator;q-regular end;
 Language
English
 Cited by
 References
1.
I. Holopainen and P. M. Soardi, A strong Liouville theorem for p-harmonic functions on graphs, Ann. Acad. Sci. Fenn. Math. 22 (1997), 205-226

2.
M. Kanai, Rough isometries and the parabolicity of riemannian manifolds, J. Math. Soc. Japan 38 (1986), 227-238 crossref(new window)

3.
S. W. Kim and Y. H. Lee, Generalized Liouville property for Schriidinqer operator on Riemannian manifolds, Math. Z. 238 (2001), 355-387 crossref(new window)

4.
Y. H. Lee, Rough isometry and Dirichlet finite harmonic functions Riemannian manifolds, Manuscripta Math. 99 (1999), 311-328 crossref(new window)

5.
Y. H. Lee, Rough isometry and energy finite solutions of the Schrodinqer operator on graphs, Discrete Math. 263 (2003), 167-177 crossref(new window)

6.
P. M. Soardi, Rough isometries and energy finite harmonic functions on graphs, Proc. Amer. Math. Soc. 119 (1993), 1239-1248 crossref(new window)