JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NUMERICAL ALGORITHM FOR ELASTO-PLASTIC MATERIAL DEFORMATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NUMERICAL ALGORITHM FOR ELASTO-PLASTIC MATERIAL DEFORMATION
HWANG HYUN-CHEOL;
  PDF(new window)
 Abstract
We present the numerical algorithm for the model for high-strain rate deformation in hyperelastic-viscoplastic materials based on a fully conservative Eulerian formulation by Plohr and Sharp. We use a hyperelastic equation of state and the modified Steinberg and Lund`s rate dependent plasticity model for plasticity. A two-dimensional approximate Riemann solver is constructed in an unsplit manner to resolve the complex wave structure and combined with the second order TVD flux. Numerical results are also presented.돀邰ʗ⨀塨?⨀联잖⨀飉ڗ⨀줋댐䡑ࠄ⃔誓ЀĀ਀會Ā਀⃘ʗ⨀聀骯᠀Ā저會Ā저磘ʗ⨀늓ᰀĀ저會Ā저탘ʗ⨀룐ẕᬀĀ저會Ā저⣙ʗ⨀ヤ솟ഀĀ會Ā胙ʗ⨀၈財؀ĀḀ會ĀḀ�ʗ⨀⃘뚗؀Ā؀會Ā؀ペʗ⨀?ĀĀĀ會ĀĀ裚ʗ⨀퀎芭ĀĀĀ會ĀĀ
 Keywords
elastoplasticity;viscoplasticity;conservation laws;material deformation;
 Language
English
 Cited by
 References
1.
E. Bonnetier, H. Jourdren, and P. Veysseyre, Un Modele Hyperelastique-Plastique Eulerieti Applicable aux Grandee Deformations: Quelques Resuliais I-D, Tech. Report preprint, Centre d'Etudes de Limeil-Valenton, 1991

2.
X. Garaizar, The Small Anisotropy Formulation of Elastic Deformation, Acta Appl, Math. 14 (1989), 259-268 crossref(new window)

3.
P. Germain and E. Lee, On Shock Waves in Elastic-Plastic Solids, J. Meeh. Phys. Solids, 21 (1973), 359-382 crossref(new window)

4.
P. LeFloch and F. Olsson, A second-order Godunov method for the conservation laws of nonlinear elastodynamics, Impact Comput. Sci. Engrg. 2 (1990), 318-354 crossref(new window)

5.
X. Lin and J. Ballmann, A Numerical Scheme for axisymmetric elastic waves in solids, Wave Motion 21 (1995), 115-126 crossref(new window)

6.
R. Menikoff and B. Plohr, The Riemann Problem for Fluid Flow of Real Materials, Rev. Mod. Phys. 61 (1989), 75-130 crossref(new window)

7.
B. Plohr, Mathematical Modeling of Plasticity in Metals, Mat. Contemp. 11 (1996), 95-120

8.
B. Plohr and D. Sharp, A Conservative Eulerian Formulation of the Equations for Elastic Flow, Adv. Appl. Math. 9 (1988), 481-499 crossref(new window)

9.
B. Plohr and D. Sharp, A Conservative Formulation for Plasticity, Adv. Appl. Math. 13 (1992), 462-493 crossref(new window)

10.
M. Scheidler, On the Coupling of Pressure and Deoiatoric Stress in Hyperelastic Materials, Proceedings of the 13th Army Symposium on Solid Mechanics (S.-C. Chou, and F. Bartlett. T. Wright. and K. Iyer, EDS.), 1994

11.
J. Simo and M. Ortiz, A Unified Approach to Finite Deformation Elastoplastic Analysis Based on the Use of Hyperelastic Constitutive Relations, Comput. Methods Appl. Mech. Engrg. 49 (1985), 221-245 crossref(new window)

12.
D. Steinberg, S. Cochran, and M. Guinan, A Constitutive Model for Metals Applicable at High Strain-Rate, J. Appl. Phys. 51 (1980), 1498-1504rm crossref(new window)

13.
E. F. Toro, The weighted average flux method applied to the Euler equations, Phil. Trans. Royal Soc. London, A (1992), no. 341, 499-530

14.
E. F. Toro, The weighted average flux method for hyperbolic conservation laws, Phil. Trans. Royal Soc. London, A (1989), no. 423, 401-418

15.
J. Trangenstein and P. Colella, A Higher-Order Godunov Method for Modeling Finite Deformation in Elastic-Plastic Solids, Comm. Pure Appl. Math. XLIV (1991), 41-100

16.
D. Wagner, Conservation Laws, Coordinate Transformations, and Differential Forms, Proceedings of the Fifth International Conference on Hyperbolic Problems Theory, Numerics, and Applications (j. Glimm, M. J. Graham, J. W. Grove, and B. J. Plohr, eds.), World Scientific Publishers, Singapore, 1996, 471-477

17.
D. Wallace, Thermoelasticity Theory of Stressed Crystals and Higher-Order Elastic Constants, Solid State Physics (H. Ehrenreich, F. Seitz, and D. Turnbull, eds.), Academic Press, New York 25 (1970), 301-403

18.
F. Wang, J. Glimm, J. Grove, B. Plohr, and D. Sharp, A Conservative Eulerian Numerical Scheme for Elasto-Plasticity and Application to Plate Impact Problems, Impact Comput. Sci. Engrg. 5 (1993), 285-308 crossref(new window)