JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SKEW ENVELOPING ALGEBRAS AND POISSON ENVELOPING ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SKEW ENVELOPING ALGEBRAS AND POISSON ENVELOPING ALGEBRAS
CHO, EUN-HEE; OH, SEI-QWON;
  PDF(new window)
 Abstract
The universal mapping property and the Gelfand- Kirillov dimension of a skew enveloping algebra are studied and it is proved that every Poisson enveloping algebra is a homomorphic image of a skew enveloping algebra.
 Keywords
skew enveloping algebra;Poisson enveloping algebra;
 Language
English
 Cited by
1.
The inversion height of the free field is infinite, Selecta Mathematica, 2015, 21, 3, 883  crossref(new windwow)
 References
1.
V. Chari and A. Pressley, A guide to quantum groups, Cambridge University Press, Providence, 1994

2.
C. Kassel, Quantum groups, Grad. Texts in Math., 155, Springer-Verlag, 1995

3.
L. I. Korogodski and Y. S. Soibelman, Algebras of functions on quantum groups, Math. Surveys Monogr., 56, American Mathematical Society, Providence, 1998

4.
L. A. Lambe and D. E. Radford, Introduction to the quantum Yang-Baxter equation and quantum groups: An algebraic approach mathematics and its applications, Kluwer Academic Publishers, Dordrecht/Boston/London, 423 (1997)

5.
J. C. McConnell and J. C. Robson, Noncommutative noetherian rings, Pure Appl. Math., A Wiley-interscience series of texts, monographs & tracts, Wiley Interscience, New York, 1987

6.
S.-Q. Oh, Poisson enveloping algebras, Comm. Algebra 27 (1999), 2181-2186 crossref(new window)

7.
S.-Q. Oh, C.-G. Park, and Y.-Y. Shin, A Poincare-Birkhoff- Witt theorem jor Poisson enveloping algebras, Comm. Algebra 30 (2002), 4867-4887 crossref(new window)

8.
M. E. Sweedler, Hopf algebras, W. A. Benjamin, Inc., New York, 1969