JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EXISTENCE AND ALGORITHM OF SOLUTIONS FOR GENERALIZED MIXED QUASI-VARIATIONAL-LIKE INEQUALITIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EXISTENCE AND ALGORITHM OF SOLUTIONS FOR GENERALIZED MIXED QUASI-VARIATIONAL-LIKE INEQUALITIES
LIU ZEQING; GUAN, HONG-YAN; SHIM, SOO-HAK; KANG, SHIN-MIN;
  PDF(new window)
 Abstract
In this paper, we introduce and study a new class of generalized mixed quasi-variational-like inequalities. Using the auxiliary principle technique, we construct a new iterative algorithm for finding the approximate solutions of the generalized mixed quasi-variational-like inequality. An existence result of solutions for the generalized mixed quasi-variational-like inequality and the convergence of the iterative algorithm are also established. Our results extend, unify and improve many recent known results.
 Keywords
generalized mixed quasi-variational-like inequality;auxiliary principle technique;iterative algorithm;convergence;
 Language
English
 Cited by
 References
1.
R. P. Agarwal, Y. J. Cho, and N. J. Huang, sensitivity analysis for strongly nonlinear quasi-variational inclusions, Appl. Math. Lett. 13 (2000), no. 6, 19-24

2.
Q. H. Ansari and J. C. Yao, Generalized variational-like inequalities and a gap function, Bull. Austral. Math. Soc. 59 (1999), 33-44 crossref(new window)

3.
Q. H. Ansari and J. C. Yao, Iterative schemes for solving mixed variational-like inequalities, J. Optim. Theory Appl. 108 (2001), 527-541 crossref(new window)

4.
R. K. Bose, On a general nolinear variational inequality, Bull. Austral. Math. Soc. 42 (1990), 399-406 crossref(new window)

5.
S. S. Chang, Generalized strongly nonlinear quasi-complementarity problem in Hilbert spaces, J. Math. Anal. Appl. 158 (1991), 194-202 crossref(new window)

6.
O. Chadli and J. C. Yao, On generalized variational-like inequalities, Arch. Math. 80 (2003), 331-336

7.
X. P. Ding, General algorithm of solutions for nonlinear variational inequalities in Banach spaces, Comput. Math. Appl. 34 (1997), no. 9, 131-137 crossref(new window)

8.
X. P. Ding, Algorithms of solutions for mixed nonlinear quasi-variational-like inequalities in reflexive Banach spaces, Appl. Math. Mech. 19 (1998), no. 6, 489-496 crossref(new window)

9.
X. P. Ding, General algorithm for nonlinear variational-like inequalities in reflexive Banach spaces, Indian J. Pure Appl. Math. 29 (1998), no. 2, 109-120

10.
X. P. Ding, Existence and algorithm of solutions for generalized mixed implicit quasi-variational inequalities, Appl. Math. Comput. 113 (2000), 67-80 crossref(new window)

11.
X. P. Ding, Generalized quasi-variational-like inequalities with nonconvex function-als, Appl. Math. Comput. 122 (2001), 267-282 crossref(new window)

12.
X. P. Ding, Existence aryl algorithm of solutions for nonlinear mixed variational- like inequalities in-Banach. spaces, J. Comput. Appl. Math. 157 (2003), 419-434 crossref(new window)

13.
X. P. Ding and C. L. Luo, Existence and algorithm for solving some generalized mixed implicit variational inequalities, Comput. Math. Appl. 37 (1999), 23-30

14.
Y. P. Fang and N. J. Huang, Variational-like inequalities with generalized monotone mappings in Banach spaces, J. Optim. Theory Appl. 118 (2003), 327-338 crossref(new window)

15.
N. J. Huang, M. R. Bai, Y. J. Cho, and S. M. Kang, Generalized nonlinear mixed quasi-variational inequalities, Computers Math. Applic. 40 (2000), 205-215 crossref(new window)

16.
N. J. Huang and Y. P. Fang, Auxiliary principle technique for generalized setvalued nonlinear quasi-variational-like inequalities, Math. Inequal. Appl. 6(2) (2003), 339-350

17.
B. S. Lee and G. M. Lee, A vector version of Minty's lemma and application, Appl. Math. Lett. 12 (1999), 43-50

18.
B. S. Lee and G. M. Lee, Variational inequalities for $(\eta, \theta)$-pseudomonotone operators in nonre-flexive Banach spaces, Appl. Math. Lett. 12 (1999), 13-17

19.
B. S. Lee, G. M. Lee, and S. J. Lee, Variational-type inequalities for $(\eta, \theta, \delta)$ pseudomonotone-type set-valued mappings in nonreflexive Banach spaces, Appl. Math. Lett. 15 (2002), 109-114 crossref(new window)

20.
B. S. Lee and S. J. Lee, Vector variational-like inequalities for set-valued mappings, Appl. Math. Lett. 13 (2000), 57-62

21.
Z. Liu, L. Debnath, S. M. Kang, and J. S. Ume, Completely generalized multivalued nonlinear quasi-variational inclusions, Internat. J. Math. and Math. Sci. 30 (2002), no. 10, 593-604 crossref(new window)

22.
Z. Liu, L. Debnath, S. M. Kang and J. S. Ume, On the generalized nonlinear quasivariational inclusions, Acta. Math. Informatica Universitatis Ostraviensis, 11 (2003), 81-90

23.
Z. Liu and S. M. Kang, Generalized multivalued nonlinear quasi-variational inclusions, Math. Nachr. 253 (2003), 45-54 crossref(new window)

24.
Z. Liu and S. M. Kang, Comments on the papers involving variational and quasi-variational inequalities for fuzzy mappings, Math. Sci. Res. J. 7(10) (2003), 394-339

25.
Z. Liu, S. M. Kang, and J. S. Ume, On general variational inclusions with noncompact valued mappings, Adv. Nonlinear Var. Inequal. 5 (2002), no. 2, 11-25

26.
Z. Liu, S. M. Kang and J. S. Ume, Generalized variational inclusions for fuzzy mappings, Adv. Nonlinear Var. Inequal., 6 (2003), 31-40

27.
Z. Liu, S. M. Kang, and J. S. Ume, Completely generalized multivalued strongly quasivariational inequali-ties, Publ. Math. Debrecen 62 (2003), no. 1-2, 187-204

28.
G. K. Panda and N. Dash, Strongly nonlinear variational-like inequalities, Indian J. pure appl. Math. 31 (2000), 797-808

29.
J. Parida, M. Sahoo, and A. Kumar, A variational-like inequalities problem, Bull. Austral. Math. Soc. 39 (1989), 225-231 crossref(new window)

30.
D. Pascaliand and S. Sburlan, Nonlinear Mapping of Monotone Type, Sijthoff & Noordhoof, The Netherlands. 1978

31.
J. C. Yao, Existence of generalized variational inequalities, Oper. Res. Lett. 15 (1994), 35-40 crossref(new window)